DOI QR코드

DOI QR Code

Influence Comparison of Customer Satisfaction Factor using Quantile Regression Model

분위회귀모형을 이용한 고객만족도 요인의 영향력 비교

  • 김성윤 (동국대학교 경영학과) ;
  • 김용태 (단국대학교 응용통계학과) ;
  • 이상준 (세명대학교 교양과정부)
  • Received : 2015.04.13
  • Accepted : 2015.06.20
  • Published : 2015.06.28

Abstract

It is current situation that a number of issues are being raised how the weight is calculated from customer satisfaction survey. This study investigated how the weight of satisfaction for each quantile is different by comparing ordinary least square regression model to quantile regression model and carried out bootstrap verification to find the influence difference of regression coefficient for each quantile. As the analysis result of using R(Quantreg package) that is open software, it appeared that there was the influence size of satisfaction factor along study result and quantile and there was the significant difference statistically regarding regression coefficient for each quantile. So, to use quantile regression model that offers the influence of satisfaction factor for each customer group along satisfaction level would contribute to plan the quantitative convergence policy for customer satisfaction.

고객만족도조사에서 가중치를 어떠한 방법으로 산정할 것인지는 여러 가지 논점이 제기되고 있는 상황이다. 이에 본 연구는 최소제곱 회귀모형과 분위회귀모형의 회귀계수를 비교하여 분위별 만족도의 가중치가 어떻게 다른지 살펴보고, 분위별 회귀계수의 영향력 차이를 파악하기 위해 부트스트랩 검증을 실시하였다. 공개 소프트웨어인 R(Quantreg 패키지)을 이용하여 분석한 결과, 분위에 따라 만족도 요인의 영향력 크기는 차이가 있는 것으로 나타났고, 각 분위별 회귀계수는 통계적으로 유의한 차이가 있는 것으로 나타났다. 따라서 평균적인 집단의 특성을 제시하는 최소제곱 회귀모형보다 만족수준에 따른 고객집단 별로 만족요인의 영향력을 제시하는 분위회귀모형을 이용하는 것이 고객만족도를 위한 계량적 융합정책 설계에 기여를 할 것이다.

Keywords

References

  1. S. G. Yoon, J. R. Koo, C. G. Choi, Customer Satisfaction. Korea Management Association, 1996.
  2. S. J. Lee, Y. T. Kim, S. Y. Kim, Comparison of Customer Satisfaction Indices Using Different Methods of Weight Calculation. The Journal of Digital Police & Management, Vol. 11, No. 12, pp. 201-211, 2013.
  3. K. S. Choi, J. O. Jeong, Information Technology and Educational Wage. East and West Studies, Vol. 17, No. 2, pp. 117-142, 2005.
  4. Rangvid, B. S., Educational Peer Effects: Quantile Regression Evidence from Denmark with PISA2000 Data. European Society for Population Economics, 2003.
  5. Koenker, R., Hallock, K. F., Quantile Regression. Journal of Economic Perspectives, Vol. 15, No. 4, pp. 143-156, 2001. https://doi.org/10.1257/jep.15.4.143
  6. Koenker, R., Bassett G., Regression Quantiles. Econometrica, Vol. 46, No. 1, pp. 33-50, 1978. https://doi.org/10.2307/1913643
  7. Koenker, R., Quantile regression. Cambridge University Press, 2005.
  8. B. J. Park, Quantile Regression Approach. Journal of Economic Theory and Econometrics, Vol. 14, No. 4, pp 93-122, 2003.
  9. Koenker, R., Quantile Regression in R: A Vignette. 2012.
  10. Crawley, M. J., The R Book. John Wiley & Sons, 2012.
  11. http://www.r-project.org/
  12. Efron, B., Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, Vol 7, No. 1, pp. 1-26, 1979. https://doi.org/10.1214/aos/1176344552
  13. Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap. Chapman & Hall/CRC Press, 1994.
  14. J. C. Ha, The Handbook of Marketing Research. Book T&T, 2010.
  15. Bouye, E., Salmon, M., Dynamic Copula Quantile Regressions and Tail Area Dynamic Dependence in Forex Markets. The European Journal of Finance, Vol. 15, No. 7-8, pp. 721-750, 2009. https://doi.org/10.1080/13518470902853491
  16. Allen, D. E., Singh, A. K., Powell, R. J., McAleer, M., Taylor, J., The Volatility-Return Relationship: Insights from Linear and Non-Linear Quantile Regressions. School of Accounting, Finance and Economics & FEMARC Working Paper Series, 2012.
  17. Y. C. Kim, J. S. Cha, Customer Satisfaction Measurement Tool and Its Strategic Application, Korea Marketing Review, Vol. 18, No. 1, pp. 113-132, 2003.