DOI QR코드

DOI QR Code

혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성

The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate

  • 김태완 (부산대학교 생산기술연구소)
  • Kim, Tae Wan (Research Institute of Industrial Technology (RIIT), Pusan National University)
  • 투고 : 2014.11.27
  • 심사 : 2015.02.02
  • 발행 : 2015.06.30

초록

본 연구는 세 종류의 서로 다른 규사와 강모래의 조합이 알칼리-활성화 슬래그(AASC) 시멘트의 압축강도와 건조수축 특성에 주는 영향에 대한 것이다. 모래의 특성은 알칼리 활성화 시멘트의 특성에 중요한 영향을 미친다. 세 종류의 규사 (S1, S2 그리고 S3)와 강모래 (RS)를 사용하였다. 또한 세 종류의 혼합 모래에대해 실험을 수행하였다. 첫 번째 시리즈 (S1)는 강모래(RS)와 규사1 (SS1)을, 두 번째 시리즈 (S2)는 강모래(RS)와 규사2 (SS2)를, 세 번째 시리즈(S3)는 강모래 (RS)와 규사3 (SS3)을 서로 다른 비율로 혼합하였다. 그 결과 혼합 모래는 AASC 모르타르의 특성에 특이할만한 영향을 주는 것으로 나타났다. 모래의 입자크기와 혼합율의 관계에 따른 압축강도와 건조수축은 혼합된 모래의 조립률(FM)과 상대 표면적이 충분히 고려되어야 한다. 모래의 종류와 혼합비율은 AASC 모르타르의 배합 설계에 중요하게 고려되어야 할 요소이다.

In this paper, the performance of alkali-activated slag cement (AASC) is assessed in terms of compressive strength and drying shrinkage, using three different types of silica sand and river sand. The sand type has an important influence on the properties of AASC mortar. Three silica sands (SS1, SS2 and SS3) and river sand (RS) were considered. Three series of blended sands have been tested. A first series (S1) with RS and SS1, a second series (S2) with RS and SS2 and third series (S3) with RS and SS3 with a different blended ratios. The result shows a very significant influence of the blended sand on the AASC mortar properties. The compressive strength and drying shrinkage related with the particle sizes and blended ratios of sands are investigated considering blended sand properties like fineness modulus (FM) and relative specific surface. The type and blended ratio of sand seems to have very significant and important consequences for the mix design of the AASC mortar.

키워드

참고문헌

  1. Melo Neto, A. A., Cincotto, M. A. and Repette, W., "Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement", Cement and Concrete Research, Vol.38, 2008, pp. 565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
  2. Atis, C. D., Bilim, C, Celik, O, Karahan, O., "Influence of Activator on the Strength and Drying Shrinkage of Alkaliactivated Slag Mortar", Construction and Building Materials, Vol.23, 2009, pp. 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  3. Krizan, D. and Zivanovic, B., "Effect of Dosage of Modulus of Water Glass on Early Hydration of Alkali-slag Cement", Cement and Concrete Research, Vol.32, 2002, pp. 1181-1188. https://doi.org/10.1016/S0008-8846(01)00717-7
  4. Collins, F. and Sanjayan J. G. "Effect of Pore Size Distribution on Drying Shrinkage of Alkali-activated Slag Concrete", Cement and Concrete Research, Vol.30, 2000, pp. 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  5. Frank Collins, Jay G. Sanjayan, "Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate", Cement and Concrete Research, Vol.29, 1999, pp. 607-610. https://doi.org/10.1016/S0008-8846(98)00203-8
  6. Palacios, M. and Puertas, F., "Effect of Superplasticizer and Shrinkage-reducing Admixtures on Alkali-activated Slag Pastes and Mortars", Cement and Concrete Research, Vol.35, 2005, pp. 1358-1367. https://doi.org/10.1016/j.cemconres.2004.10.014
  7. Palacios, M. and Puertas, F., "Effect of Shrinkage-reducing Admixtures on the Properties of Alkali-activated Slag Mortars and Pastes", Cement and Concrete Research, Vol.37, 2007, pp. 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  8. Bilim, C., Karahan, O., Atis, C. D. and Ilkentapar, S., "Influence of Admixtures on the Properties of Alkali-activated Slag Mortars Subjected to Different Curing Conditions", Materials and Design, Vol.44, 2013, pp. 540-547. https://doi.org/10.1016/j.matdes.2012.08.049
  9. Chang, J. J., Yeih, W. and Hung, C. C., "Effects of Gypsum and Phosphoric Acid on the Properties of Sodium Silicatebased Alkali-activated Slag Pastes", Cement & Concrete Composites, Vol.27, 2007, pp. 85-91.
  10. Chi, M., "Effects of Dosage of Alkali-activated Solution and Curing Conditions on the Properties and Durability of Alkali- Activated Slag Concrete", Construction and Building Materials, Vol.35, 2012, pp. 240-245. https://doi.org/10.1016/j.conbuildmat.2012.04.005
  11. Schutter, G. E. and Poppe, A. M., "Quantification of the Water Demand of Sand in Mortar", Construction and Building Materials, Vol.18, 2004, pp. 517-521. https://doi.org/10.1016/j.conbuildmat.2004.04.004
  12. Appa Rao, G., "Influence of Silica Fume on Long-term Strength of Mortars Containing Different Aggregate Fractions", Cement and Concrete Research, Vol.31, 2001, pp. 7-12. https://doi.org/10.1016/S0008-8846(00)00346-X
  13. Shen, S. and Yu, H., "Characterize Packing of Aggregate Particles for Paving materials: Particles Size Impact", Construction and Building Materials, Vol.25, 2011, pp. 1362-1368. https://doi.org/10.1016/j.conbuildmat.2010.09.008
  14. Lim, S. K., Tan, C. S., Chen, K. P., Lee, M. L. and Lee, W. P., "Effect of Different Sand Grading on Strength Properties of Cement Grout", Construction and Building Materials, Vol.38, 2013, pp. 348-355. https://doi.org/10.1016/j.conbuildmat.2012.08.030
  15. Haach, V. G., Vasconcelos, G. and Lourenco, P. B., "Influence of Aggregate Grading and Water/Cement Ratio in Workability and Hardened Properties of Martars", Construction and Building Materials, Vol.25, 2011, pp. 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011
  16. Venkatarama Reddy, B. V. and Gupta, A., "Influence of Sand Grading on the Characteristics of Mortars and Soilcement Block Masonry", Construction and Building Materials, Vol.22, 2008, pp. 1614-1623. https://doi.org/10.1016/j.conbuildmat.2007.06.014