DOI QR코드

DOI QR Code

골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete

  • Ahn, Kyung-Lim (Dep. Architecture Engineering of Chung-Nam National University) ;
  • Jang, Seok-Joon (Dep. Architecture Engineering of Chung-Nam National University) ;
  • Jang, Sang-Hyeok (Dep. Architecture Engineering of Chung-Nam National University) ;
  • Yun, Hyun-Do (Dep. Architecture Engineering of Chung-Nam National University)
  • 투고 : 2014.07.21
  • 심사 : 2015.01.14
  • 발행 : 2015.06.30

초록

콘크리트는 압축강도가 증가할수록 취성적인 성질이 두드러지는데, 이를 보완하기 위해 강섬유를 혼입하여 콘크리트에 연성을 부여하는 강섬유 보강 콘크리트에 대한 연구가 진행되고 있다. 강섬유 보강 콘크리트는 섬유 혼입률에 따라 역학적 특성이 달라지며, 일반적으로 1.5%의 혼입률이 가장 효과적인 것으로 알려져 있다. 섬유 혼입률 2%를 초과하게 되면 섬유 뭉침현상이 발생하는데, 이로 인해 역학적 특성이 저하된다. 본 연구에서는 2% 이상의 높은 혼입률에서 섬유의 분산성을 향상시키기 위해 굵은 골재 크기를 변수로 재령에 따른 강섬유 보강 콘크리트의 압축거동에 대해 평가하였다. 굵은 골재 크기에 따른 굳지 않은 성상, 압축강도, 탄성계수 및 압축인성 등을 평가한 결과 섬유 혼입률이 증가할수록 공기량은 증가하였으며, 공기량이 증가함에 따라서 슬럼프는 감소하였다. 또한 골재 크기가 압축강도 및 탄성계수에 미치는 영향은 미소하였지만, 섬유의 분산성을 향상시켜 압축인성 및 최대하중 이후 거동에 영향을 끼치는 것으로 나타났다. 또한 강섬유 보강 콘크리트의 압축인성은 재령이 지날수록 감소하게 되는데, 굵은 골재 크기가 감소할수록 압축인성의 감소율이 줄어들어 보다 안정적인 것으로 나타났다. 따라서 본 연구에서 나타난 것과 같이 강섬유 보강 콘크리트의 굵은 골재 크기를 조절하여 높은 혼입률을 갖는 강섬유 보강 콘크리트의 섬유 분산성과 연성적인 거동을 부여할 수 있을 것으로 판단된다.

This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.

키워드

참고문헌

  1. Nataraja, M. C., Dhang, N., and Gupta, A. P., "Stress-strain curves for steel-fiber reinforced concrete under compression," Cement & Concrete Composites, Vol. 21, 1991, pp. 383-390.
  2. Joaquim A. O., Barros, Jose M. Sena-Cruz, "Compression behaviour of steel fibre reinforced self-compacting concrete - age influence and modeling," Civil Engineering, Minho University, Portugal, 2006, pp. 57.
  3. Jang, S. J., Yun, Y. J., Yun, H. D., "Influence of Fiber Volume Fraction and Aggregate Size on Flexural Behavior of High Strength Steel Fiber-Reinforced Concrete (SFRC)," Applied Mechanics and Materials, Vol. 372, 2013, pp. 223-226. https://doi.org/10.4028/www.scientific.net/AMM.372.223
  4. James, P., Romualdi, James A. Mandel, "Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reinforcement," Journal of the American Concrete Institute, ACI, 1964, pp. 657-671.
  5. Lee, J. H., Park, H. S., Cho, H. W., Kang, S. T., Kim, D. J., and Kim, J. J., "Effect of Fine Aggregate Size and Sand Percentage on Flexural Characteristics of SFRC," Proceedings of the Korea Concrete Institute, 2011, pp. 431-432.
  6. KS F 2403, "Standard test method for making and curing concrete specimens," Korea Standards Association, 2014, pp. 14.
  7. KS F 2405, "Standard test method for compressive strength of concrete," Korea Standards Association, 2010, pp. 10.
  8. RILEM TC 148-SSC, "Strain softening of concrete-test methods for compressive softening, test method for measurement of the strain-softening behaviour of concrete under uniaxial compression," Materials and Structures, Vol. 33, No. 230, 2000, pp. 347-351. https://doi.org/10.1007/BF02479643
  9. JSCE-SF4, "PartIII - 2 Method of tests for steel fiber reinforced concrete," Concrete Library of JSCE, No. 3, 1984, pp. 74.
  10. Katsuta, T., "On the elastic and plastic properties of concrete in compression tests with high deformation velocity: Part 1," Trans Inst Jap Arch, No. 29, 1943, pp. 380-392.
  11. Fenella, D. A., and Naaman, A. E., "Stress-strain Properties of Fiber Reinforced Mortar in Compression," ACI Journal, Vol. 82, No. 4, 1985, pp. 475-483.
  12. Ezeldin, A. S., and Balaguru, P. N., "Normal and high strength fiber reinforced concrete under compression," Journal of Materials on Civil engineering, Vol. 4, No. 4, 1992, pp. 415-427. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  13. Sim, J. I., and Yang, K. H., "Effect of the Maximum Aggregate Size on the Workability and Mechanical Properties of Lightweight Concrete," Joural of the Architectural Institute of Korea, Vol. 25, No. 5, 2012, pp. 61-68.
  14. Kim, D. H., Lee, S. S., Song, H. Y., and Kim, E. Y., "An Experimental Study on the Properties of Concrete according to G/S ratio classified by Maximum Size of Coarse Aggregate," Journal of the Korea Institute of Building Construction, Vol. 4, No. 2, 2004, pp. 97-103. https://doi.org/10.5345/JKIC.2004.4.2.097
  15. The Korea Concrete Institute(KCI), "Structural Concrete Design Code," 2012.
  16. Lee, T. H., Shin, H. O., Lee, S. H., Lee, J. H., and Yoon, Y. S., "Prediction of the Elastic Modulus of Ultra High Strength Concrete," Proceedings of the Korea Concrete Institute, Vol. 25, 2012, pp. 337-338.
  17. Sivakumar, A., and Manu Santhanam, "Mechanical properties of high strength concrete reinforced with metallic an non-metallic fibres," Cement & Concrete Composite, Vol. 29, 2007, pp. 603-608. https://doi.org/10.1016/j.cemconcomp.2007.03.006
  18. Lavanya Prabha, S., Dattatreya, J. K., Neelamegam, M., and Seshagiri Reo, M. V., "Study on stress-strain properties of reactive powder concrete under uniaxial compression," International Journal of Engineering Science and Technology, Vol. 2, No. 11, 2010, pp. 6408-6416.
  19. Kang, S. T., and Ryu, G. S., "The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC)," Journal of the Korea Concrete Institute, Vol. 23, No. 1, 2011, pp. 67-75. https://doi.org/10.4334/JKCI.2011.23.1.067

피인용 문헌

  1. Effects of carbon additives on heat-transfer and mechanical properties of high early strength cement mortar vol.20, 2016, https://doi.org/10.5714/CL.2016.20.072