DOI QR코드

DOI QR Code

Ductility Evaluation of Heavyweight Concrete Shear Walls with Wire Ropes as a Lateral Reinforcement

와이어로프로 횡보강된 고중량콘크리트 전단벽의 연성평가

  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 문주현 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2014.07.02
  • Accepted : 2015.02.17
  • Published : 2015.06.30

Abstract

This study examined the feasibility of wire ropes as lateral reinforcement at the boundary element of heavyweight concrete shear walls. The spacing of the wire ropes varied from 60 mm to 120 mm at an interval of 30 mm, which produces the volumetric index of the lateral reinforcement of 0.126~0.234. The wire ropes were applied as a external hoop and/or internal cross-tie. Five shear wall specimens were tested to failure under constant axial load and cyclic lateral loads. Test results showed that with the increase of the volumetric index of the lateral reinforcement, the ductility of shear walls tended to increase, whereas the variation of flexural capacity of walls was minimal. The flexural capacity of shear walls tested was slightly higher than predictions determined from ACI 318-11 procedure. The displacement ductility ratio of shear walls with wire ropes was higher than that of shear wall with the conventional mild bar at the same the volumetric index of the lateral reinforcement. In particular, the shear walls with wire rope index of 0.233 achieved the curvature ductility ratio of more than 16 required for high-ductility design.

이 연구에서는 중량콘크리트 전단벽의 경계요소내에서 횡보강근으로서 와이어로프의 적용가능성을 평가하였다. 와이어로프의 횡보강근의 배근간격은 60 mm에서 120 mm로 변화되었는데, 이때의 횡보강근체적지수는 0.126~0.234이다. 와이어로프는 주철근의 외부와 경계요소내 내부의 크로스타이로 적용되었다. 와이어로프로 횡보강된 5개의 중량콘크리트 전단벽은 축력하중하에서 반복횡하중의 실험이 수행되었다. 실험결과, 횡보강근체적지수가 증가함에 따라 전단벽의 연성은 현저하게 증가한 반면, 휨 내력의 변화는 미미하였다. 전단벽의 휨 내력의 실험결과는 ACI 318-11 기준의 예측값 보다 다소 높았다. 동일한 횡보강근체적지수에서 와이어로프로 횡보강된 전단벽의 변위연성비는 일반철근으로 보강된 전단벽보다 높았다. 특히, 이 실험결과로부터 고연성설계를 위한 곡률연성비 16 이상을 확보하기 위해서는 횡보강근체적지수가 0.233 이상이 요구되었다.

Keywords

References

  1. Park, R. and Paulay, T., "Reinforced Concrete Structures", Wiley Interscience Publication, New Jersey, USA, 1933, pp. 769.
  2. ACI Committee 318, "Building Code Requirements for Structural Concrete(ACI 318M-11) and Commentary", American Concrete Institute, Farmington Hills, Michigan, USA, 2011, pp. 503.
  3. European Standard EN 1992-1-1:2004, "Eurocode 2 : Design of Concrete Structures", British Standard, Brussels, Belgium, 2004, pp. 225.
  4. Mun, J. S., Mun, J. H., Yang, K. H., and Lee, H., "Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete", Journal of the Korea Concrete Institute, Vol.25, No.4, 2013, pp. 439-446 (in Korean). https://doi.org/10.4334/JKCI.2013.25.4.439
  5. Yang, K. H., "Flexural Behviour of RC Columns using Wire Ropes as Lateral Reinforcement", Magazine of Concrete Research, Vol.64, No.3, 2012, pp. 269-281. https://doi.org/10.1680/macr.10.00191
  6. Yang, K. H., "Development of Performance-Based Design Guideline for High-Density Concrete Walls", Technical Report (2nd. year), Kyonggi University, 2013, pp. 115 (in Korean).
  7. Budek, A. M., Priestley, M. J. N., and Lee, C. O., "Seismic Design of Columns With High-Strength Wire and Strand as Spiral Reinforcement", ACI Structural Journal, Vol.99, No.5, 2002, pp. 660-670.
  8. Watson, S. and Park, R.,"Simulated Seismic Load Tests on Reinforced Concrete Columns", Journal of Structural Engineering, ASCE, Vol.120, No.6, 1994, pp. 1825-1849. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1825)
  9. Sheikh, S. A. and Khoury, S. S., "Confined Concrete Columns with Stubs", ACI Structural Journal, Vol.90, No.4, 1993, pp. 414-431.
  10. ACI Committee 304, "Heavyweight Concrete: Measuring, Mixing, Transporting, and Placing (ACI 304.3R-96)", American Concrete Institute, Farmington Hills, MI, 1996, pp. 8.
  11. Yang, K. H., Mun, J. S., and Lee, H., "Workability and Mechanical Properties of Heavyweight Magnetite Concrete", ACI Materials Journal, Vol.111, No.3, 2014, pp. 273-282.
  12. ASTM, "ASTM C 39/C39M: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", ASTM International, West Conshohocken, PA, 2014, pp. 7.
  13. ASTM, "ASTM C469/C469M: Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression", ASTM International, West Conshohocken, PA, 2010, pp. 5.
  14. ASTM, "ASTM A 416/A416M: Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete", ASTM International, West Conshohocken, PA, 2012, pp. 5.
  15. FEMA, "FEMA 356: Prestandard and Commentary for the Seismic Rehabilitation of Buildings", FEMA, Washingtoh DC., 2000.
  16. KRTA, "Bridge Code(Limit State Design) 2012", Korea Road and Transportation Association, 2012 (in Korean).
  17. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, J. E., Russell, H. G., and Corley, W. G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls", Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, IL, 1976, pp. 233.
  18. Oesterle, R. G., Aristizasbal-Ochoa, J. D., Fiorato, A. E., Russell, H. G., and Corley, W. G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls Phase II", Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, IL, 1979, pp. 208.
  19. Kim, M. J., "An Experimental Study on Boundary Element Reinforcements of High-Strength Concrete Bearing Walls", Ph.D. thesis, Program in Architectural Engineering, Konkuk University, South Korea, 1998, pp. 83 (in Korean).