DOI QR코드

DOI QR Code

Propagation Speed and Characteristic Analysis of Flame in Compartment Fires of Flammable Liquids

인화성 혼합유의 구획 화재에 의한 화염의 전파 속도 및 특성 해석

  • Joe, Hi-Su (Dept. of Fire Safety Engineering, Jeonju University) ;
  • Lee, Jae-Ou (Dept. of Fire Safety Engineering, Jeonju University) ;
  • Choi, Chung-Seog (Dept. of Fire Safety Engineering, Jeonju University)
  • 조희수 (전주대학교 소방안전공학과) ;
  • 이재오 (전주대학교 소방안전공학과) ;
  • 최충석 (전주대학교 소방안전공학과)
  • Received : 2015.04.14
  • Accepted : 2015.06.12
  • Published : 2015.06.30

Abstract

This study analyzed the flame characteristics when igniting 200 ml of flammable liquids containing equal parts gasoline and another flammable liquid. These mixtures were used to fill a divided space in a simulation. The length of one side of the divided space was 2,000 mm, and the length of the combustion device was 1,000 mm. The mixture with alcohol had the highest flame propagation speed (0.7 s), while the mixture with light oil showed the lowest (1.2 s). The gasoline and acetone mixture reached peak flame in 25.5 s, at the highest speed, while the mixture with light oil reached peak flame in 163.7 s at the lowest speed. The gasoline and light oil showed the longest continuous combustion time (332.7 s), while the gasoline and paint thinner showed the shortest (121.5 s). A fire inspector who is examining the scene of a fire needs to analyze both the statements of the first eyewitness and the flame characteristics collectively.

본 연구는 동일 비율로 휘발유와 혼합된 인화성 액체 200 ml를 축소 모의된 구획 공간에 채우고 착화시켰을 때의 특성을 해석하였다. 구획된 공간의 한 변은 2,000 mm이며, 연소가 진행된 장치의 길이는 1,000 mm이다. 휘발유와 알코올을 혼합한 물질의 화염 전파 속도가 0.7 s로 가장 빠르고, 가장 늦은 물질은 휘발유와 경유를 혼합한 물질로 1.2 s이다. 화염이 최성기에 가장 빨리 도달한 물질은 휘발유와 아세톤을 혼합한 것으로 25.5 s가 소요되었다. 또한 휘발유와 경유를 혼합한 물질은 163.7 s로 가장 늦었다. 연소의 지속 시간은 휘발유와 경유를 혼합한 물질이 332.7 s로 가장 길었으며, 가장 짧은 것은 휘발유와 시너를 혼합한 물질로 121.5 s이다. 따라서 화재 현장을 조사하는 화재조사관은 최초 목격자의 진술은 물론 화염의 특성을 종합적으로 분석할 필요가 있다.

Keywords

References

  1. C. Schroll, "Flammable Liquid Safety. Storage Areas should have Several Basic Features", Occupational Health & Safety, pp. 50-54 (2002).
  2. P. A. Fomin and J. R. Chen, "Shock induced Condensation in a Fuel-rich Oxygen Containing Bubble in a Flammable Liquid", Chemical Engineering Science, pp. 696-710 (2008).
  3. H. J. Liaw, V. Gerbaud, C. C. Chen and C. M. Shu, "Effect of Stirring on the Safety of Flammable Liquid Mixtures", Journal of Hazardous Materials, pp. 1093-1101 (2010).
  4. J. L. Scbeffey and D. C. Tabar, "Hazard Rating System for Flammable and Combustible Liquids", Process Safety Progress, pp. 230-236 (1996).
  5. Y. Iwata, H. Koseki and K. Hasegawa, "Lower and Upper Flash Points of Flammable Liquids with Flame-Suppressing Agents", Journal of Fire Sciences, pp. 459-476 (1999).
  6. M. R. Brooks and D. A. Crowl, "Vapor Flammability above Aqueous Solutions of Flammable Liquids", Journal of Loss Prevention in the Process Industries, pp. 477-485 (2007).
  7. C. S. Choi and H. S. Joe, "Analysis of Fire Patterns of Flammable Liquids for Oil Flow Tests of Compartment Fires with Reduced Simulation", Journal of Korean Institute of Fire Science & Engineering, Vol. 28, No. 3, pp. 43-48 (2014).
  8. O. Badr, A. Marafi, F. Amin, A. Rahimi and K. Al-Muhannadi, "Risk Assessment of Accidental Spills of Toxic and Flammable Liquids on Land", Disaster Prevention and Management, pp. 13-23 (2004).
  9. D. M. Ha, "Flash Points of a Flammable Liquid Mixture of Binary System", Korean Chemical Engineering Research (Chemistry Engineering), pp. 146-150 (1999).
  10. H. S. Joe, "Study on the Flame Propagation Speed of Flammable Liquids and Patterns of Damage by Fire", Master's thesis, Jeonju University, pp. 25-36 (2013).
  11. J. D. DeHaan, "Kirk's Fire Investigation", Sixth Edition, Pearson Education Inc., pp. 23-28 (2007).
  12. C. S. Choi, "Study on Dangerous Factors and Damage Pattern Analysis of Leaking Water from Water Purifiers", Journal of the Korean Society of Safety, Vol. 27, No. 3, pp. 57-62 (2012). https://doi.org/10.14346/JKOSOS.2012.27.3.057