
J. Soc. Korea Ind. Syst. Eng Vol. 38, No. 2 : 47-55, June 2015 ISSN : 2005-0461(print)
http://dx.doi.org/10.11627/jkise.2015.38.2.47 ISSN : 2287-7975(online)

Rescheduling on Parallel Machines with
Compressible Processing Times

Suhwan Kim†

Department of Military Operations Research, Korea National Defense University

작업시간이 압축 가능한 경우 병렬기계의 재일정계획

김 수 환†

국방대학교 군사운영분석학과

This paper deals with rescheduling on unrelated parallel-machines with compressible processing times, assuming that the arrival
of a set of new jobs triggers rescheduling. It formulates this rescheduling problem as an assignment problem with a side constraint
and proposes a heuristic to solve it. Computational tests evaluate the efficacy of the heuristic.

Keywords：Rescheduling, Parallel Machines, Compressible Processing Time, Heuristic

1. Introduction1)

It is very common that a set of jobs being processed ac-
cording to a schedule must be rescheduled because of a
disruption. Events that might cause a disruption include the
arrival of a new job, the breakdown of a machine, or the
unavailability of materials. Most deterministic machine sche-
duling problems deal with constant job processing times. In
various real-life systems, however, processing times may be
compressed by allocating additional resources, such as money,
overtime, energy, fuel, catalysts, or manpower.

This paper deals with rescheduling on unrelated parallel
machines with compressible processing times and proposes
a heuristic. We assume that the original set of jobs had been
optimally scheduled on unrelated parallel machines to mini-
mize the sum of completion times and the costs of compress-
ing processing times and that a disruption occurs when a

Received 3 Fabruary 2015; Finally Revised 20 March 2015;
Accepted 20 March 2015
†Corresponding Author : ksuhwan@kndu.ac.kr

set of new jobs arrives. In rescheduling, some additional
measures may be needed, because any change of the original
schedule may lead to additional cost (e.g., transportation) and
rescheduling effort (e.g., job reassignment, workforce resche-
duling, and/or customer delivery-date changes). Reschedu-
ling parallel machines may result in reassigning some job
to a machine other than the one on which it was originally
scheduled, a result we call machine reassignment. We con-
sider the disruptions caused by machine reassignments, either
as part of the objective function or by imposing a constraint
to limit their number. When the cost of reassignment is diffi-
cult to estimate, we limit the number of machine reassign-
ments by imposing a constraint, resulting in an assignment
problem with a side constraint (APSC) (i.e., an NP-hard
problem [13]).

Several papers have contributed to rescheduling on parallel-
machines with machine reassignment as an additional mea-
sure. For example, Alagoz and Azizoglu [4] and Azizoglu
and Alagoz [6] studied the objective of minimizing the sum
of completion times and either included penalties for ma-
chine reassignment in the objective function or limited the

Suhwan Kim48

number of reassignments permitted with an additional
constraint. Curry and Peters [8] limited machine reassign-
ments by invoking a constraint and used simulation to dem-
onstrate the effect of reassignment in the parallel-machine
scheduling environment. Ozen and Azizoglu [15] considered
unrelated parallel machines to minimize the total flow time,
restricting the total reassignment cost.

Compressible processing times can provide flexibility for
rescheduling by managing processing times. Scheduling with
compressible processing times has been studied extensively.
Shabtay and Steiner [19] gave an extensive survey on this
topic. Gurel and Akturk [11] studied a single machine with
compressible processing times with different non-linear com-
pressible cost functions. Yin and Wang [22] studied a single
machine to minimize a cost function containing makespan,
considering compressible processing times and learning
effect. Yang [21] studied rescheduling on a single machine
configuration with compressible processing times, allowing
time compressions only for newly arrived jobs. Akturk et. al.
[3] introduced parallel machine match-up scheduling prob-
lems to cope with machine disruptions when processing times
of the jobs are compressible at a certain manufacturing cost.
Gurel and Cincioglu [10] studied a parallel machine resched-
uling problem with compressible processing times for num-
ber of disrupted jobs. They considered a bicriteria reschedul-
ing problem to deal with a trade-off between the number
of on-time jobs and manufacturing cost, admitting machine
reassignment.

Several solution approaches have been proposed for
APSC. Murty [14] proposed a ranking algorithm, which gen-
erates all assignments in order of increasing cost and selects
the least-cost assignment that satisfies the side constraint.
Gupta and Sharma [9] developed an enumeration scheme us-
ing a search tree in which each node represents a complete,
feasible solution, so that a node can be fathomed if the sol-
ution it represents is infeasible with respect to the side
constraint. Aggarwal [2] presented a two-stage algorithm that
applies Lagrange relaxation to eliminate the side constraint
and then searches for an optimal solution using Murty’s [14]
ranking algorithm. Aboudi and Jornsten [1] took a polyhedral
approach, presenting several classes of valid inequalities and
associated separation problems. Mazzola and Neebe [13] pre-
sented a branch-and-bound (B&B) algorithm that incorpo-
rates the subgradient method as part of a bounding procedure
and a subgradient-based heuristic. Punnen and Aneja [18]

observed that the Mazzola-Neebe heuristic is sensitive to the
range of the coefficients in the objective function and in the
side constraint. Lieshout and Volgenant [12] proposed a
B&B algorithm, obtaining lower bounds by utilizing Lagrange
relaxation and a heuristic by modifying the B&B algorithm.
They mentioned that the B&B algorithm and their heuristic
were also affected by the range of coefficients: if the ranges
double, their run times also double.

In our study, we consider rescheduling on unrelated paral-
lel machines with compressible processing times and propose
a heuristic which is less sensitive to the range of coefficients.
The body of this paper is organized in four sections. Section
2 formulates the scheduling and rescheduling problems we
study. Section 3 presents our LP(Linear Programming)-based
heuristic for APSC. Section 4 describes a computational
evaluation of the proposed heuristic. Finally, section 5 relates
our conclusions and fertile directions for future research.

2. Problem Definitions

This section is comprised of four subsections: the first in-
troduces the underlying scheduling problem and each of the
subsequent three subsections formulates a different version
of the rescheduling problem. The first version includes a cost
for each machine reassignment; the second incorporates a
constraint to limit the number of such reassignments; and
the third minimizes compression costs and introduces a con-
straint to limit the sum of completion times. We assume that
rescheduling is triggered by the arrival of a set of new jobs.

2.1   ≤  ∑ ∑
We use the standard three-field classification scheme (i.e.,

    ) of Pinedo [14] to denote the scheduling problem
as   ≤  ∑∑, where the  field uses 
to denote  unrelated parallel machines; the  field gives
, the actual amount of time compression for job  on ma-
chine ≤  ≤  and , the maximum possible time
compression for job  on machine  ≤  ≤  ;
the  field specifies the objective, which involves the sum
of completion times, , and compression costs for which
 denotes the cost per unit time of compressing job  on
machine . This subsection formulates this scheduling pro-
blem. Throughout this paper, we use the following notation :

Rescheduling on Parallel Machines with Compressible Processing Times 49

Indices
 machines
 jobs
 sequence positions

Index sets
 unrelated parallel machines;    ⋯ 
 jobs to be processed;   ⋯ 
 sequence positions;  

Parameters
 completion time of job 
 cost per unit time of compressing job  on ma-

chine 
 normal (i.e., uncompressed) processing time of job

 on machine 
 maximum possible time compression of job  on

machine 

Decision variables
 amount of processing time compression of job

 on machine 
(i.e., actual processing time is  )

 1 if job  is scheduled as the  to last job on
machine , 0 otherwise.

For this scheduling problem, Alidaee and Ahmadian [5]
proved the following Proposition, which is based on a result
of Vickson [20] :

Proposition In the   ≤  ∑∑ scheduling
problem, there exists an optimal schedule in which   
if  ≥  and    if   (i.e., its processing time is
not changed or fully compressed from the normal processing
time (), depending on the sequence position of the job.)
(Proof. see [5]). ⃞

Based on the Proposition, the underlying scheduling prob-
lem can be formulated by extending the  ∑ scheduling
model as follows [17] :

 :

Min 
∈ ∈ ∈

    (1)

s.t. 
∈ ∈

  ∈ (2)

 
∈
 ≤  ∈ ∈ (3)

 ∈  ∈ ∈ ∈ (4)

Objective function (1) minimizes the sum of completion
times and compression costs. Constraints (2) assure that each

job is scheduled exactly once and (3) assure that each posi-
tion on each machine is taken by at most one job. Constraints
(4) require all decision variables to be nonnegative. Problem
 is the well-known assignment problem, which is totally
unimodular, so that an optimal integer solution can be pre-
scribed by linear programming in polynomial time.

2.2   ≤   ∑ ∑ ∑∈
We assume that a disruption occurs when a (index) set

 of new jobs arrives at time  as a schedule for the (index)
set of original jobs, , is ongoing. In particular, jobs in (index)
set  are in process at time , each on a scheduled machine,
which will become available only after completing the job
it is processing.

<Figure 1> Jobs in-process at Time t

For example, in <Figure 1>, a set of new jobs arrives
at time , machines  and  are processing scheduled jobs,
which have remaining processing times  and  , respec-
tively. In this case, machines q and r will be available at
times  and  , respectively. Upon arrival of a set
of new jobs, delete the sets of completed () and in-process
() jobs from , and re-index remaining jobs in set  ′ {Jo\
∪∪. Without loss of generality, we assume through-
out this paper that a set of new jobs arrives at time 0.

In this and the following subsections, we formulate impor-
tant variations of the rescheduling problem. First, we intro-
duce some additional notation :

 index set of originally scheduled jobs remaining
after deleting in-process and completed jobs; \
∪

 index set of newly arrived jobs
 ′ index set of jobs to be rescheduled; ∪
 machine to which job ∈ is assigned in the

initial schedule
 time at which machine i will be available, given

that new jobs arrive at time 0
 cost of reassigning job ∈ onto machine ∈ \
 1 if job ∈ is reassigned onto machine ∈ \

, 0 otherwise.

Suhwan Kim50

We penalize the amount of inconvenience reassignments
cause as a part of the objective function or limit the permis-
sible number of reassignments (i.e., amount of incon-
venience) by incorporating a constraint. For example, failure
to meet a delivery date may affect customer goodwill to a
degree that is hard to estimate and, therefore, the amount
of inconvenience can be limited by incorporating a constraint
to restrict the number of reassignments permitted. However,
if machine reassignment incurs additional costs that can be
relatively easily valued, the objective function can reflect the
trade-off between the costs associated with rescheduling and
inconvenience.

The first version of the rescheduling problem can be desig-
nated by    ≤   ∑ ∑ ∑∈,
which includes an additional measure, ∑∈, the total

weighted cost of reassigning jobs in set , each of which
had been scheduled originally on a different machine. To
clarify, the reschedule can assign job  to the same machine
() on which it had been scheduled or reassign it to a different
machine (∈ \). We assume that a job that is being
processed when rescheduling occurs remains on the machine
that is processing it and its processing time is not compressed.

Since the symbol  in the  field represents the time
at which machine  will be available;    if machine
 is not processing a job when the set of new jobs arrives
at time 0. If a job ∈ is reassigned, ∑∈ ╲ 
∑∈╲∑∈  ; otherwise, job  remains assigned

to machine  according to the original schedule, so that
∑∈╲ ∑∈╲∑∈   Rescheduling problem

   ≤   ∑∑∑∈ can be formu-

lated as assignment problem  .

 :

Min 
∈ ∈ ∈

     (5)

 
∈


∈╲

∈


s.t. (2)-(4).

Constraints are those of the assignment problem, so that
P(10) can be solved in polynomial time.

2.3   ≤  ∑∈ ≤  ∑ ∑
When the cost of reassignment, (e.g.,  in ), is diffi-

cult to estimate, it may be more appropriate to limit the num-

ber of jobs reassigned by imposing a constraint. This version
of the rescheduling problem incorporates a constraint to im-
pose a limitation, , to restrict machine reassignments.

 :

Min 
∈ ∈ ∈

    

s.t. (2)-(4).

 
∈


∈ ╲

∈
 ≤ (6)

Constraint (6) invokes the reassignment limitation. This APSC
does not possess the unimodularity property; it is NP-hard [16].

2.4   ≤  ∑ ≤  ∑
In this subsection, we consider that compressible process-

ing times can provide flexibility for rescheduling by manag-
ing processing times. Rescheduling upon the arrival of a set
of new jobs may increase the sum of completion times, even
of originally scheduled jobs. Furthermore, it may be im-
portant to allow processing time compression to satisfy cus-
tomer demands in a more timely manner; thus, total cost
may increase due to time compression.

This problem can be designated by   ≤  ∑
≤ ∑, which invokes limit,  , on the sum of com-
pletion times. To formulate this problem as an integer pro-
gram, we introduce the following decision variables, assum-
ing that all processing and compression times are integers.
 1 if job  is scheduled as the  to last job on

machine  and its time compression is the integer
value  , 0 otherwise

We also formulate this problem as an APSC as follows :

 :

Min 
∈ ∈ ∈ ∈ (7)

s.t. 
∈ ∈ ∈

   ∈ ′ (8)

 
∈ ∈

 ≤  ∈ ∈ (9)

 
∈ ∈ ′∈ ∈

    ≤  (10)

 ∈  ∈ ∈ ′ ∈ ∈ (11)

Rescheduling on Parallel Machines with Compressible Processing Times 51

<Figure 2> Constraint    ≤  with Different RHS

Values

where  denotes the set of possible compression times
for job  on machine  (i.e.,     ⋯ ). Objective
function (7) minimizes the total cost of processing time
compression. Constraints (8) and (9) assure that each job
is scheduled exactly once and each position on each machine
is taken by at most one job, respectively. Constraint (10)
assures that the sum of completion times does not exceed
the limit,  . P(3) has also an additional constraint (10) that
makes this problem NP-hard [16].

3. The Linear Relaxation Heuristic

In this section, we propose a heuristic, the Linear Relaxa-
tion Heuristic (LRH), which is based on the linear relaxations
of  and  . Our LRH can be applied to any model
that possesses the totally unimodular property, augmented
with a single side constraint. It solves the linear relaxation
once and combines the logic of sensitivity analysis applied
to the right hand side (RHS) of the side constraint with the
fact that all extreme points are 0, 1 integer vectors. Note
that sensitivity analysis of the RHS specifies the amount by
which the RHS value can change before the current basis
changes.

To explain the idea of our heuristic, we present an example
with feasible region        ≤  
≤   ≤   ≤   ≥   ≥   ≥  and cost vec-
tor      <Figure 2> shows that the hyper-
plane represented by the first constraint in the definition of
 cuts through the (unit hypercube) polytope described by
the other inequalities, forming three fractional extreme points

(i.e., (0.5, 1, 1), (1, 0.5, 1), and (1, 1, 0.5)).
In <Figure 2>, as the RHS of inequality    ≤

2.5 is gradually decreased, the basis does not change but
the objective value slowly increases until the RHS reaches
the value 2 and the translated hyperplane (represented by
the dotted lines) intersects extreme points (0, 1, 1), (1, 0,
1), and (1, 1, 0). Since sensitivity analysis of the RHS pro-
vides lower and upper bounds on the RHS coefficient within
which the current basis remains optimal, we can use it to
determine how much the RHS must change to translate the
hyperplane far enough to intersect an adjacent, extreme point,
which must be integer, because the underlying polytope is,
by assumption, totally unimodular. Like APSC, all extreme
points of feasible region  are composed of 0, 1 integer vec-
tors except any fractional extreme points formed by the addi-
tional constraint.

Our heuristic solves the linear relaxation of APSC once,
then performs a sensitivity analysis of the RHS to determine
the value that changes the basis, equivalently, translates the
hyperplane until it intersects at least one feasible, integer ex-
treme point of the assignment polytope. If the solution is
fractional, the RHS value of the side constraint is replaced
with the lower bound of the range and then the heuristic
finds an adjacent extreme-point solution by multiplying the
inverse of the current basis by the replaced RHS vector.
Since the constrained optimal solution to APSC is not always
adjacent to the current fractional solution, the heuristic does
not always guarantee the optimal solution.

Let  , , and  ≤ ≤  denote the optimal solution
value, the optimal dual variable value corresponding to the
side constraint, and the sensitivity range for the RHS value
 of the side constraint in the linear relaxation of APSC,
respectively.

Property If   or  ≠ and   , the current solution
is optimal for the APSC.
Proof. If   , the side constraint intersects the underlying
polytope at an optimal integer extreme point. Now, suppose
 ≠ and   . If the RHS of the side constraint in APSC
is decreased by  , the new objective value is  

  . Since   , there is no change in the objective
value. This happens when the side constraint is redundant
(e.g., if the orientation of the objective function is such that
the solution to the linear relaxation is an integer extreme
point). ⃞

Suhwan Kim52

Letting  and 





 be the optimal basis of the linear relax-

ation of APSC and RHS vector with  as the RHS value
of the side constraint, respectively, we now detail LRH in
application to solve APSC.

LRH
Solve the linear relaxation of APSC.

If infeasible, STOP : APSC is infeasible.
Else, Apply sensitivity analysis to determine lower and
upper bounds for the RHS coefficient of the side con-
straint,  ≤ ≤ that allow the current basis to remain
optimal,
 If the solution is integer, STOP : current solution is

optimal.

 Else, compute  





 to find the new extreme-point

solution.

4. Computational Evaluation

In this section, we evaluate the efficacy of LRH using
randomly generated instances of problems  and  .
We program LRH, using the C/C++ language and the CPLEX
12.1.0 callable library, and perform all computations on a
Dell PC running Windows 7 with a 2.67 GHz CPU and 2
GB memory. The first subsection describes test instances and
the second relates test results.

4.1 Instance Generation

This section reviews instance generation. For problem
 , our tests involve three factors, the numbers of ma-
chines, old jobs, and new jobs with three levels of each factor :
2, 5, and 10; and 100, 200, and 600; and 10, 50, and 100;
respectively. This results in 27 cases as shown in <Table
1> and we generate 20 instances of each randomly.

We generate each independent instance randomly using
the discrete uniform distribution (DU);   for proce-
ssing times (), costs of processing time compressions (),
and machine available times ();   ×, for the
maximum possible processing time compressions (); and,
finally, ×   ×   for the machine reassignment
limit () in which   denotes the number of old jobs to
be rescheduled.

<Table 1> Test Instances for Problem P(2)

Cases # of machines # of old jobs # of new jobs

1, 10, 19 2, 5, 10 100 10
2, 11, 20 2, 5, 10 100 50
3, 12, 21 2, 5, 10 100 100
4, 13, 22 2, 5, 10 200 10
5, 14, 23 2, 5, 10 200 50
6, 15, 24 2, 5, 10 200 100
7, 16, 25 2, 5, 10 600 10
8, 17, 26 2, 5, 10 600 50
9, 18, 27 2, 5, 10 600 100

For problem  , we consider the first factor with three
levels (2, 5 and 10 machines) but limit the second and third
factors to one level (100 old and 50 new jobs) because this
problem incorporates variables with four indices and, hence,
causes memory issues if more jobs are involved. <Table 2>
displays those instances.

<Table 2> Test Instances for Problem P(3)

Case # of machines # of old jobs # of new jobs

28 2 100 50
29 5 100 50
30 10 100 50

Again, we generate 20 independent instances for each case
as described above, except that we generate the limit on the
sum of completion times as follows

 ×  ×  

where
  ∑∈∑∈∑∈∑∈   s.t. (8), (9) and

(11)} (i.e., the minimum value of the sum of completion times
when processing time compression is disallowed). Depending
on the value of  , problem (3) can be infeasible. Thus, we
repeat instance generations until we get 20 feasible instances.

4.2 Computational Results

All computational results are averages taken over the 20 in-
stances associated with each case. <Table 3> displays test results
for cases 1 through 27. Column  gives the number of in-
stances out of 20 that our heuristic solves to optimality. Columns
,  , and  provide average, maximum, and
minimum relative deviations from the optimal value, respectively.

Rescheduling on Parallel Machines with Compressible Processing Times 53

<Table 3> Test Results for Cases 1 through 27

Case


(#(%))


(%)


(%)


(%)

  


(secs)

1
2
3
4
5
6
7
8
9

Average

17(85)
15(75)
18(90)
17(85)
17(85)
17(85)
18(90)
17(85)
18(90)

17.1(85.5)

0.030
0.063
0.006
0.043
0.006
0.019
0.004
0.007
0.005
0.020

0.354
0.519
0.089
0.339
0.099
0.180
0.051
0.084
0.095

0
0
0
0
0
0
0
0
0

4.566
4.801
3.292
3.270
3.586
3.539
7.868
8.290
9.775
5.443

10.440
11.968
4.304
4.487
5.655
5.314

10.581
9.949

17.374

2.324
3.201
2.807
2.469
2.633
2.210
5.967
6.570
7.629

0.098
0.206
0.490
0.612
0.897
1.595
8.752
9.984

11.171
3.756

10
11
12
13
14
15
16
17
18

Average

17(85)
16(80)
16(80)
10(50)
14(70)
15(75)
15(75)
13(65)
15(75)

14.6(72.8)

0.074
0.106
0.051
0.147
0.089
0.068
0.026
0.026
0.018
0.067

0.967
0.969
0.650
0.627
0.605
0.522
0.238
0.166
0.175

0
0
0
0
0
0
0
0
0

3.335
2.502
1.934
2.186
2.122
2.293
4.503
4.869
4.934
3.186

5.936
4.555
2.941
4.195
3.785
4.174
5.665
6.508
6.270

2.455
2.020
1.392
1.458
1.509
1.658
3.628
3.922
3.828

0.267
0.694
1.864
2.356
3.505
5.106

20.306
22.710
26.981
9.310

19
20
21
22
23
24
25
26
27

Average

13(65)
18(90)
17(85)
11(55)
16(80)
16(80)
15(75)
19(95)
16(80)

15.7(78.3)

0.263
0.070
0.063
0.187
0.093
0.044
0.038
0.014
0.053
0.092

1.442
0.946
0.623
0.785
0.600
0.327
0.262
0.285
0.375

0
0
0
0
0
0
0
0
0

2.575
2.098
1.779
2.140
2.013
1.887
3.611
3.411
3.655
2.574

4.146
3.952
3.012
3.372
3.777
2.907
5.077
4.477
4.468

1.959
1.563
1.515
1.671
1.549
1.451
2.581
2.500
2.711

0.755
1.790
3.800
4.256
6.778

10.695
43.042
49.057
58.771
19.883

The relative deviation  is computed as follows :

 


×

in which  and  denote the objective value of LRH and
the optimal solution, respectively. Columns ,  ,
and  , give average, maximum, and minimum values of
CPLEX run time divided by LRH run time, respectively.
The last column gives , the average run time of LRH in
each case.

Rows 1~9, 10~18, and 19~27 give results for 2, 5, and
10 machines, respectively. The underlined rows following
rows 9, 18 and 27 report the average number of optimal
solutions out of 20,  and  for all instances involving
2, 5, and 10 machines, respectively.

LRH optimally solves about 78.9% of our test instances.
For remaining instances, it provides near-optimal solutions,

resulting in an average relative deviation over all test in-
stances of 0.06%. Column  shows that LRH solves ins-
tances about 3.7 times faster than CPLEX, on average. In
particular, LRH solves instances that have many jobs relative
to the number of machines much faster than CPLEX. For
example, LRH solves case 9 about 9.8 times faster than
CPLEX, on average.

We also compare cases in which the ratio of the number
of old jobs to the number of new jobs is relatively high with
cases for which the ratio is small, in particular, equal to 1.
For this test, we adapt medium-sized cases 11, 14, and 17,
which all have 50 new jobs but 100, 200, and 600 old jobs,
giving ratios of 2, 4 and 12, respectively. To specify new
cases, , , and , we change the numbers of old and
new jobs, keeping the same total number of jobs in each
case (150, 250 and 650, respectively), to make each ratio
equal to 1, resulting in 75, 125, and 325 old as well as new
jobs in these cases, respectively.

Suhwan Kim54

<Table 4> Comparison of Cases  and  for   11, 14, 17

Case
Ratio

#old/#new


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)

11
14
17

2
4

12

16(80)
14(70)
13(65)

0.106
0.089
0.026

0.969
0.605
0.166

0
0
0

0.694
3.505

22.710

0.811
4.15

26.317

0.609
2.964

19.593
11d

14d

17d

1
1
1

14(70)
17(85)
15(75)

0.082
0.019
0.028

0.515
0.268
0.321

0
0
0

0.638
3.010

23.575

0.78
3.276

27.768

 0.53
2.684

19.297

<Table 5> Test Results for Cases 28, 29 and 30

Case


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)


(secs)

28
29
30

Average

2(10)
0(0)
0(0)

0.7(3.3)

0.990
0.967
1.698
1.218

3.303
3.183
6.724

 0
0.006
0.083

36.912
24.389
13.868
25.056

152.856
151.122
 79.416

4.009
4.000
4.828

 5.911
15.031
31.012
17.318

<Table 6> Comparison of Cases  and  for   28, 29, 30

Case


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)

28
29
30

2(10)
0(0)
0(0)

0.990
0.967
1.698

3.303
3.183
6.724

 0
0.006
0.083

5.911
15.031
31.012

6.801
17.893
36.301

4.742
10.483
26.864

28d

29d

30d

0(0)
0(0)
0(0)

1.762
1.875
1.637

6.022
3.919
4.466

0.074
0.164
0.054

5.919
15.285
31.928

 7.27
17.769
35.537

 4.617
12.293
28.174

<Table 4> assesses the difference that the ratio of the num-
ber of old jobs to the number of new jobs makes on run
time and solution quality by comparing cases 11, 14, and
17 with cases, , , and , respectively. Columns,
  and  , give average, maximum, and minimum
values of LRH run time, respectively. <Table 4> shows that
neither the run time nor the solution quality of our heuristic
is affected by the ratio of the number of old jobs to the
number of new jobs, even though the ratios differ widely.

<Table 5> gives test results obtained for cases 28, 29,
and 30. These results show that very few of instances are
solved optimally but that average relative deviation barely
exceeds 1%. However, LRH solves test instances about 25
times faster than CPLEX, on average.

We use cases of problem P(3) to test the sensitivity of
our heuristic relative to the values of the objective function
and the RHS coefficients. Run time of the heuristic proposed
by Lieshout and Volgenant [12] double if the ranges of co-
efficients double. Thus, we double the values of the co-
efficients of the objective function and the RHS to define
cases cases, , , and , respectively, then generate

20 independent instances of each case to compare test results
with cases 28, 29, and 30, respectively.

<Table 6> compares results associated with cases  and
 for   28, 29, 30. The first six columns and the last
three columns correspond to those of <Table 2> and <Table
4>, respectively. <Table 6> shows that solution qualities (i.e.,
  , and ) and  for classes  and ,
  28, 29, 30 are almost the same, even though coefficients
of the objective function and the RHS are doubled in the
latter three cases. We have similar results for problem P(2).

5. Conclusions and Recommendations
for Future Research

This paper addresses the problem of rescheduling on un-
related parallel machines with compressible processing times,
where the objective is to minimize the sum of completion
times, compression costs, and, perhaps, job reassignment costs.
We formulate this problem as an APSC, and we introduce
a heuristic for problems of this type.

Rescheduling on Parallel Machines with Compressible Processing Times 55

Tests show that our heuristic solves some 78.9% of our
randomly generated test instances for cases 1 through 27 to
optimality, providing near-optimal solutions for all test in-
stances, and requires much shorter run time than CPLEX,
especially on instances of problem P(3) :   ≤  
∑ ≤ ∑. Furthermore, our tests show that our
heuristic is not sensitive to the values of objective function
coefficients or of the RHS coefficient of the side constraint.
Tests show that our heuristic resolves rescheduling problems
effectively and that it can be applied to find a good solution
quickly for cases in which finding an optimal solution may
require prohibitive run time.

Our heuristic can be also applied to any problem with
a set of constraints that possesses the unimodular property,
augmented with a side constraint. We plan to test such nu-
merical instances. In addition to this, we will try to modify
our heuristic to solve APSC with multiple side constraints,
perhaps by aggregating them.

References

 [1] Aboudi, R. and Jornsten, K., Resource constrained as-
signment problems. Discrete Appl Math, 1990, Vol. 26,
pp. 175-191.

 [2] Aggarwal, V., A lagrangean-relaxation method for the
constrained assignment problem. Compu Oper Res, 1985,
Vol. 12, No. 1, pp. 97-106.

 [3] Akturk, M.S., Atamturk, A., and Gurel, S., Parallel ma-
chine match-up scheduling with manufacturing cost con-
siderations. J Sched, 2010, Vol. 13, pp. 95-110.

 [4] Alagoz, O. and Azizoglu, M., Rescheduling of identical
parallel machines under machine eligibility constraints.
Eur J Oper Res, 2003, Vol. 149, pp. 523-532.

 [5] Alidaee, B. and Ahmadian, A., Two parallel machine
sequencing problems involving controllable job proce-
ssing times. Eur J Oper Res, 1993, Vol. 70, pp. 335-341.

 [6] Azizoglu, M. and Alagoz, O., Parallel-machine resche-
duling with machine disruptions. IIE Trans, 2005, Vol.
37, pp. 1113-1118.

 [7] Cheng, T.C.E., Chen, Z.L., and Li, C.L., Parallel-ma-
chine scheduling with controllable processing times. IIE
Trans, 1996, Vol. 28, pp. 177-180.

 [8] Curry, J. and Peters, B., Rescheduling parallel machines
with stepwise increasing tardiness and machine assign-
ment stability objectives. Inter J Prod Res, 2005, Vol.
43, No. 15, pp. 3231-3246.

 [9] Gupta, A. and Sharma, J., Tree search method for opti-
mal core management of pressurized water reactors.
Compu Oper Res, 1981, Vol. 8, No. 4, pp. 263-266.

[10] Gurel, S. and Cincioglu, D., Rescheduling with control-
lable processing times for number of disrupted jobs and
manufacturing cost objectives. Int J Prod Res, 2015,
Vol. 53, No. 9, pp. 2751-2770.

[11] Gurel, S. and Akturk, M.S., Considering manufacturing
cost and scheduling performance on a CNC turning
machine. Eur J Oper Res, 2007, Vol. 177, pp. 325-343.

[12] Lieshout, P.M.D. and Volgenant, A., A branch-and-
bound algorithm for the singly constrained assignment
problem. Eur J Oper Res, 2007, Vol. 176, pp. 151-161.

[13] Mazzola, J. and Neebe, A.W., Resource-constrained as-
signment scheduling. Oper Res, 1986, Vol. 34, pp. 560-
572.

[14] Murty, K., An algorithm for ranking all the assignments
in order of increasing cost. Oper Res, 1968, Vol. 16,
pp. 682-687.

[15] Ozlen, M. and Azizouglu, M., Generating all efficient
solutions of a rescheduling problem on unrelated para-
llel machines. Int J Prod Res, 2009, Vol. 47, No. 19,
pp. 5245-5270.

[16] Papadimitriou, C.H. and Steiglitz, K., Combination Opti-
mization : Algorithms and Complexity. Englewood Cliffs,
NJ : Prentice Hall, 1982.

[17] Pinedo, M.L., Scheduling : Theory, Algorithm, and
Systems (3rd ed.) : Prentice Hall, 2008.

[18] Punnen, A. and Aneja, Y.P., A tabu search algorithm
for the resource-constrained assignment problem. J Oper
Res Soc, 1995, Vol. 46, pp. 214-220.

[19] Shabtay, D. and Steniner, G., A survey of scheduling
with controllable processing times. Discrete Appl Math,
2007, Vol. 155, pp. 1643-1666.

[20] Vickson, R.G., Two single-machine sequencing prob-
lems involving controllable job processing times. AIIE
Trans, 1980, Vol. 12, pp. 258-262.

[21] Yang, B., Single machine rescheduling with new jobs
arrivals and processing time compression. Inter J Adv
Manuf Tech, 2007, Vol. 34, pp. 378-384.

[22] Yin, N. and Wang, X.Y., Single-machine scheduling
with controllable processing times and learning effect.
Int J Adv Manuf Technol, 2011, Vol. 54, pp. 743-748.

ORCID
Suhwan Kim | http://orcid.org/0000-0003-4916-1713

