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This paper deals with rescheduling on unrelated parallel-machines with compressible processing times, assuming that the arrival 
of a set of new jobs triggers rescheduling. It formulates this rescheduling problem as an assignment problem with a side constraint 
and proposes a heuristic to solve it. Computational tests evaluate the efficacy of the heuristic.
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1. Introduction1)

It is very common that a set of jobs being processed ac-
cording to a schedule must be rescheduled because of a 
disruption. Events that might cause a disruption include the 
arrival of a new job, the breakdown of a machine, or the 
unavailability of materials. Most deterministic machine sche-
duling problems deal with constant job processing times. In 
various real-life systems, however, processing times may be 
compressed by allocating additional resources, such as money, 
overtime, energy, fuel, catalysts, or manpower. 

This paper deals with rescheduling on unrelated parallel 
machines with compressible processing times and proposes 
a heuristic. We assume that the original set of jobs had been 
optimally scheduled on unrelated parallel machines to mini-
mize the sum of completion times and the costs of compress-
ing processing times and that a disruption occurs when a 
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set of new jobs arrives. In rescheduling, some additional 
measures may be needed, because any change of the original 
schedule may lead to additional cost (e.g., transportation) and 
rescheduling effort (e.g., job reassignment, workforce resche-
duling, and/or customer delivery-date changes). Reschedu-
ling parallel machines may result in reassigning some job 
to a machine other than the one on which it was originally 
scheduled, a result we call machine reassignment. We con-
sider the disruptions caused by machine reassignments, either 
as part of the objective function or by imposing a constraint 
to limit their number. When the cost of reassignment is diffi-
cult to estimate, we limit the number of machine reassign-
ments by imposing a constraint, resulting in an assignment 
problem with a side constraint (APSC) (i.e., an NP-hard 
problem [13]). 

Several papers have contributed to rescheduling on parallel- 
machines with machine reassignment as an additional mea-
sure. For example, Alagoz and Azizoglu [4] and Azizoglu 
and Alagoz [6] studied the objective of minimizing the sum 
of completion times and either included penalties for ma-
chine reassignment in the objective function or limited the 
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number of reassignments permitted with an additional 
constraint. Curry and Peters [8] limited machine reassign-
ments by invoking a constraint and used simulation to dem-
onstrate the effect of reassignment in the parallel-machine 
scheduling environment. Ozen and Azizoglu [15] considered 
unrelated parallel machines to minimize the total flow time, 
restricting the total reassignment cost.

Compressible processing times can provide flexibility for 
rescheduling by managing processing times. Scheduling with 
compressible processing times has been studied extensively. 
Shabtay and Steiner [19] gave an extensive survey on this 
topic. Gurel and Akturk [11] studied a single machine with 
compressible processing times with different non-linear com-
pressible cost functions. Yin and Wang [22] studied a single 
machine to minimize a cost function containing makespan, 
considering compressible processing times and learning 
effect. Yang [21] studied rescheduling on a single machine 
configuration with compressible processing times, allowing 
time compressions only for newly arrived jobs. Akturk et. al. 
[3] introduced parallel machine match-up scheduling prob-
lems to cope with machine disruptions when processing times 
of the jobs are compressible at a certain manufacturing cost. 
Gurel and Cincioglu [10] studied a parallel machine resched-
uling problem with compressible processing times for num-
ber of disrupted jobs. They considered a bicriteria reschedul-
ing problem to deal with a trade-off between the number 
of on-time jobs and manufacturing cost, admitting machine 
reassignment.

Several solution approaches have been proposed for 
APSC. Murty [14] proposed a ranking algorithm, which gen-
erates all assignments in order of increasing cost and selects 
the least-cost assignment that satisfies the side constraint. 
Gupta and Sharma [9] developed an enumeration scheme us-
ing a search tree in which each node represents a complete, 
feasible solution, so that a node can be fathomed if the sol-
ution it represents is infeasible with respect to the side 
constraint. Aggarwal [2] presented a two-stage algorithm that 
applies Lagrange relaxation to eliminate the side constraint 
and then searches for an optimal solution using Murty’s [14] 
ranking algorithm. Aboudi and Jornsten [1] took a polyhedral 
approach, presenting several classes of valid inequalities and 
associated separation problems. Mazzola and Neebe [13] pre-
sented a branch-and-bound (B&B) algorithm that incorpo-
rates the subgradient method as part of a bounding procedure 
and a subgradient-based heuristic. Punnen and Aneja [18] 

observed that the Mazzola-Neebe heuristic is sensitive to the 
range of the coefficients in the objective function and in the 
side constraint. Lieshout and Volgenant [12] proposed a 
B&B algorithm, obtaining lower bounds by utilizing Lagrange 
relaxation and a heuristic by modifying the B&B algorithm. 
They mentioned that the B&B algorithm and their heuristic 
were also affected by the range of coefficients: if the ranges 
double, their run times also double.

In our study, we consider rescheduling on unrelated paral-
lel machines with compressible processing times and propose 
a heuristic which is less sensitive to the range of coefficients. 
The body of this paper is organized in four sections. Section 
2 formulates the scheduling and rescheduling problems we 
study. Section 3 presents our LP(Linear Programming)-based 
heuristic for APSC. Section 4 describes a computational 
evaluation of the proposed heuristic. Finally, section 5 relates 
our conclusions and fertile directions for future research.

2. Problem Definitions

This section is comprised of four subsections: the first in-
troduces the underlying scheduling problem and each of the 
subsequent three subsections formulates a different version 
of the rescheduling problem. The first version includes a cost 
for each machine reassignment; the second incorporates a 
constraint to limit the number of such reassignments; and 
the third minimizes compression costs and introduces a con-
straint to limit the sum of completion times. We assume that 
rescheduling is triggered by the arrival of a set of new jobs.

2.1   ≤  ∑ ∑
We use the standard three-field classification scheme (i.e.,  

    ) of Pinedo [14] to denote the scheduling problem 
as   ≤  ∑∑, where the   field uses   
to denote   unrelated parallel machines; the   field gives  
, the actual amount of time compression for job  on ma-
chine ≤  ≤  and , the maximum possible time 
compression for job  on machine  ≤  ≤  ; 
the  field specifies the objective, which involves the sum 
of completion times, , and compression costs for which 
 denotes the cost per unit time of compressing job  on 
machine . This subsection formulates this scheduling pro-
blem. Throughout this paper, we use the following notation :
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Indices
 machines
 jobs
 sequence positions

Index sets
 unrelated parallel machines;    ⋯ 
 jobs to be processed;   ⋯ 
 sequence positions;  

Parameters
 completion time of job 
 cost per unit time of compressing job  on ma-

chine 
 normal (i.e., uncompressed) processing time of job  

 on machine 
 maximum possible time compression of job  on 

machine 

Decision variables
 amount of processing time compression of job  

 on machine 
(i.e., actual processing time is  )

 1 if job  is scheduled as the   to last job on 
machine , 0 otherwise.

For this scheduling problem, Alidaee and Ahmadian [5] 
proved the following Proposition, which is based on a result 
of Vickson [20] :

Proposition In the   ≤  ∑∑ scheduling 
problem, there exists an optimal schedule in which    
if  ≥  and    if   (i.e., its processing time is 
not changed or fully compressed from the normal processing 
time (), depending on the sequence position of the job.) 
(Proof. see [5]). ⃞

Based on the Proposition, the underlying scheduling prob-
lem can be formulated by extending the  ∑ scheduling 
model as follows [17] :

  : 

Min   
∈ ∈ ∈

    (1)

s.t.    
∈ ∈

      ∈ (2)

      
∈
 ≤         ∈ ∈ (3)

      ∈        ∈ ∈ ∈ (4)

Objective function (1) minimizes the sum of completion 
times and compression costs. Constraints (2) assure that each 

job is scheduled exactly once and (3) assure that each posi-
tion on each machine is taken by at most one job. Constraints 
(4) require all decision variables to be nonnegative. Problem  
  is the well-known assignment problem, which is totally 
unimodular, so that an optimal integer solution can be pre-
scribed by linear programming in polynomial time.

2.2   ≤   ∑ ∑ ∑∈
We assume that a disruption occurs when a (index) set  

 of new jobs arrives at time  as a schedule for the (index) 
set of original jobs, , is ongoing. In particular, jobs in (index) 
set  are in process at time , each on a scheduled machine, 
which will become available only after completing the job 
it is processing.  

<Figure 1> Jobs in-process at Time t

For example, in <Figure 1>, a set of new jobs arrives 
at time , machines  and  are processing scheduled jobs, 
which have remaining processing times   and  , respec-
tively. In this case, machines q and r will be available at 
times   and  , respectively. Upon arrival of a set 
of new jobs, delete the sets of completed () and in-process 
() jobs from , and re-index remaining jobs in set  ′ {Jo\ 
∪∪. Without loss of generality, we assume through-
out this paper that a set of new jobs arrives at time 0.

In this and the following subsections, we formulate impor-
tant variations of the rescheduling problem. First, we intro-
duce some additional notation :

 index set of originally scheduled jobs remaining 
after deleting in-process and completed jobs; \  
∪

 index set of newly arrived jobs
 ′ index set of jobs to be rescheduled; ∪
 machine to which job ∈ is assigned in the 

initial schedule
 time at which machine i will be available, given 

that new jobs arrive at time 0
 cost of reassigning job ∈ onto machine ∈ \
 1 if job ∈ is reassigned onto machine ∈ \ 

, 0 otherwise.
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We penalize the amount of inconvenience reassignments 
cause as a part of the objective function or limit the permis-
sible number of reassignments (i.e., amount of incon-
venience) by incorporating a constraint. For example, failure 
to meet a delivery date may affect customer goodwill to a 
degree that is hard to estimate and, therefore, the amount 
of inconvenience can be limited by incorporating a constraint 
to restrict the number of reassignments permitted. However, 
if machine reassignment incurs additional costs that can be 
relatively easily valued, the objective function can reflect the 
trade-off between the costs associated with rescheduling and 
inconvenience.

The first version of the rescheduling problem can be desig-
nated by    ≤   ∑ ∑ ∑∈, 
which includes an additional measure, ∑∈, the total 

weighted cost of reassigning jobs in set , each of which 
had been scheduled originally on a different machine. To 
clarify, the reschedule can assign job  to the same machine 
() on which it had been scheduled or reassign it to a different 
machine (∈ \). We assume that a job that is being 
processed when rescheduling occurs remains on the machine 
that is processing it and its processing time is not compressed. 

Since the symbol   in the   field represents the time 
at which machine  will be available;    if machine  
 is not processing a job when the set of new jobs arrives 
at time 0. If a job ∈ is reassigned, ∑∈ ╲ 
∑∈╲∑∈  ; otherwise, job  remains assigned 

to machine  according to the original schedule, so that  
∑∈╲ ∑∈╲∑∈   Rescheduling problem

   ≤   ∑∑∑∈ can be formu-

lated as assignment problem  .

 : 

Min   
∈ ∈ ∈

     (5)

               
∈


∈╲

∈


s.t.   (2)-(4).

Constraints are those of the assignment problem, so that  
P(10) can be solved in polynomial time.

2.3   ≤  ∑∈ ≤  ∑ ∑
When the cost of reassignment, (e.g.,  in ), is diffi-

cult to estimate, it may be more appropriate to limit the num-

ber of jobs reassigned by imposing a constraint. This version 
of the rescheduling problem incorporates a constraint to im-
pose a limitation, , to restrict machine reassignments.

 : 

Min   
∈ ∈ ∈

    

s.t.   (2)-(4).

      
∈


∈ ╲

∈
 ≤ (6)

Constraint (6) invokes the reassignment limitation. This APSC 
does not possess the unimodularity property; it is NP-hard [16]. 

2.4   ≤  ∑ ≤  ∑
In this subsection, we consider that compressible process-

ing times can provide flexibility for rescheduling by manag-
ing processing times. Rescheduling upon the arrival of a set 
of new jobs may increase the sum of completion times, even 
of originally scheduled jobs. Furthermore, it may be im-
portant to allow processing time compression to satisfy cus-
tomer demands in a more timely manner; thus, total cost 
may increase due to time compression.

This problem can be designated by   ≤  ∑
≤ ∑, which invokes limit,  , on the sum of com-
pletion times. To formulate this problem as an integer pro-
gram, we introduce the following decision variables, assum-
ing that all processing and compression times are integers.
 1 if job  is scheduled as the   to last job on 

machine  and its time compression is the integer 
value  , 0 otherwise

We also formulate this problem as an APSC as follows :

 : 

Min   
∈ ∈ ∈ ∈ (7)

s.t.    
∈ ∈ ∈

            ∈ ′ (8)

      
∈ ∈

 ≤              ∈ ∈ (9)

      
∈ ∈ ′∈ ∈

    ≤  (10)

      ∈     ∈ ∈ ′ ∈ ∈ (11)
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<Figure 2> Constraint    ≤  with Different RHS

Values

where  denotes the set of possible compression times 
for job  on machine  (i.e.,     ⋯ ). Objective 
function (7) minimizes the total cost of processing time 
compression. Constraints (8) and (9) assure that each job 
is scheduled exactly once and each position on each machine 
is taken by at most one job, respectively. Constraint (10) 
assures that the sum of completion times does not exceed 
the limit,  . P(3) has also an additional constraint (10) that 
makes this problem NP-hard [16].

3. The Linear Relaxation Heuristic

In this section, we propose a heuristic, the Linear Relaxa-
tion Heuristic (LRH), which is based on the linear relaxations 
of   and  . Our LRH can be applied to any model 
that possesses the totally unimodular property, augmented 
with a single side constraint. It solves the linear relaxation 
once and combines the logic of sensitivity analysis applied 
to the right hand side (RHS) of the side constraint with the 
fact that all extreme points are 0, 1 integer vectors. Note 
that sensitivity analysis of the RHS specifies the amount by 
which the RHS value can change before the current basis 
changes. 

To explain the idea of our heuristic, we present an example 
with feasible region        ≤  
≤   ≤   ≤   ≥   ≥   ≥  and cost vec-
tor      <Figure 2> shows that the hyper-
plane represented by the first constraint in the definition of  
  cuts through the (unit hypercube) polytope described by 
the other inequalities, forming three fractional extreme points 

(i.e., (0.5, 1, 1), (1, 0.5, 1), and (1, 1, 0.5)).  
In <Figure 2>, as the RHS of inequality    ≤ 

2.5 is gradually decreased, the basis does not change but 
the objective value slowly increases until the RHS reaches 
the value 2 and the translated hyperplane (represented by 
the dotted lines) intersects extreme points (0, 1, 1), (1, 0, 
1), and (1, 1, 0). Since sensitivity analysis of the RHS pro-
vides lower and upper bounds on the RHS coefficient within 
which the current basis remains optimal, we can use it to 
determine how much the RHS must change to translate the 
hyperplane far enough to intersect an adjacent, extreme point, 
which must be integer, because the underlying polytope is, 
by assumption, totally unimodular. Like APSC, all extreme 
points of feasible region   are composed of 0, 1 integer vec-
tors except any fractional extreme points formed by the addi-
tional constraint.

Our heuristic solves the linear relaxation of APSC once, 
then performs a sensitivity analysis of the RHS to determine 
the value that changes the basis, equivalently, translates the 
hyperplane until it intersects at least one feasible, integer ex-
treme point of the assignment polytope. If the solution is 
fractional, the RHS value of the side constraint is replaced 
with the lower bound of the range and then the heuristic 
finds an adjacent extreme-point solution by multiplying the 
inverse of the current basis by the replaced RHS vector. 
Since the constrained optimal solution to APSC is not always 
adjacent to the current fractional solution, the heuristic does 
not always guarantee the optimal solution.

Let  , , and  ≤ ≤   denote the optimal solution 
value, the optimal dual variable value corresponding to the 
side constraint, and the sensitivity range for the RHS value  
  of the side constraint in the linear relaxation of APSC, 
respectively. 

Property If    or  ≠  and   , the current solution 
is optimal for the APSC.
Proof. If   , the side constraint intersects the underlying 
polytope at an optimal integer extreme point. Now, suppose 
 ≠  and   . If the RHS of the side constraint in APSC 
is decreased by  , the new objective value is  

  . Since   , there is no change in the objective 
value. This happens when the side constraint is redundant 
(e.g., if the orientation of the objective function is such that 
the solution to the linear relaxation is an integer extreme 
point). ⃞
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Letting   and 





  be the optimal basis of the linear relax-

ation of APSC and RHS vector with   as the RHS value 
of the side constraint, respectively, we now detail LRH in 
application to solve APSC. 

LRH
Solve the linear relaxation of APSC.

If infeasible, STOP : APSC is infeasible.
Else, Apply sensitivity analysis to determine lower and 
upper bounds for the RHS coefficient of the side con-
straint,  ≤ ≤ that allow the current basis to remain 
optimal,
    If the solution is integer, STOP : current solution is 

optimal.

    Else, compute  





 to find the new extreme-point 

solution.

4. Computational Evaluation

In this section, we evaluate the efficacy of LRH using 
randomly generated instances of problems   and  . 
We program LRH, using the C/C++ language and the CPLEX 
12.1.0 callable library, and perform all computations on a 
Dell PC running Windows 7 with a 2.67 GHz CPU and 2 
GB memory. The first subsection describes test instances and 
the second relates test results.

4.1 Instance Generation

This section reviews instance generation. For problem  
 , our tests involve three factors, the numbers of ma-
chines, old jobs, and new jobs with three levels of each factor : 
2, 5, and 10; and 100, 200, and 600; and 10, 50, and 100; 
respectively. This results in 27 cases as shown in <Table 
1> and we generate 20 instances of each randomly.

We generate each independent instance randomly using 
the discrete uniform distribution (DU);   for proce-
ssing times (), costs of processing time compressions (), 
and machine available times ();   ×, for the 
maximum possible processing time compressions (); and, 
finally, ×   ×   for the machine reassignment 
limit ( ) in which   denotes the number of old jobs to 
be rescheduled.

<Table 1> Test Instances for Problem P(2)

Cases # of machines # of old jobs # of new jobs

1, 10, 19 2, 5, 10 100 10
2, 11, 20 2, 5, 10 100 50
3, 12, 21 2, 5, 10 100 100
4, 13, 22 2, 5, 10 200 10
5, 14, 23 2, 5, 10 200 50
6, 15, 24 2, 5, 10 200 100
7, 16, 25 2, 5, 10 600 10
8, 17, 26 2, 5, 10 600 50
9, 18, 27 2, 5, 10 600 100

For problem  , we consider the first factor with three 
levels (2, 5 and 10 machines) but limit the second and third 
factors to one level (100 old and 50 new jobs) because this 
problem incorporates variables with four indices and, hence, 
causes memory issues if more jobs are involved. <Table 2> 
displays those instances.

<Table 2> Test Instances for Problem P(3)

Case # of machines # of old jobs # of new jobs

28 2 100 50
29 5 100 50
30 10 100 50

Again, we generate 20 independent instances for each case 
as described above, except that we generate the limit on the 
sum of completion times as follows

 ×  ×  

where
  ∑∈∑∈∑∈∑∈   s.t. (8), (9) and 

(11)} (i.e., the minimum value of the sum of completion times 
when processing time compression is disallowed). Depending 
on the value of  , problem (3) can be infeasible. Thus, we 
repeat instance generations until we get 20 feasible instances.

4.2 Computational Results 

All computational results are averages taken over the 20 in-
stances associated with each case. <Table 3> displays test results 
for cases 1 through 27. Column  gives the number of in-
stances out of 20 that our heuristic solves to optimality. Columns 
,  , and   provide average, maximum, and 
minimum relative deviations from the optimal value, respectively.
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<Table 3> Test Results for Cases 1 through 27

Case


(#(%))


(%)


(%)


(%)

  


(secs)

1
2
3
4
5
6
7
8
9

Average

17(85)
15(75)
18(90)
17(85)
17(85)
17(85)
18(90)
17(85)
18(90)

17.1(85.5)

0.030
0.063
0.006
0.043
0.006
0.019
0.004
0.007
0.005
0.020

0.354
0.519
0.089
0.339
0.099
0.180
0.051
0.084
0.095

0
0
0
0
0
0
0
0
0

4.566
4.801
3.292
3.270
3.586
3.539
7.868
8.290
9.775
5.443

10.440
11.968
4.304
4.487
5.655
5.314

10.581
9.949

17.374

2.324
3.201
2.807
2.469
2.633
2.210
5.967
6.570
7.629

0.098
0.206
0.490
0.612
0.897
1.595
8.752
9.984

11.171
3.756

10
11
12
13
14
15
16
17
18

Average

17(85)
16(80)
16(80)
10(50)
14(70)
15(75)
15(75)
13(65)
15(75)

14.6(72.8)

0.074
0.106
0.051
0.147
0.089
0.068
0.026
0.026
0.018
0.067

0.967
0.969
0.650
0.627
0.605
0.522
0.238
0.166
0.175

0
0
0
0
0
0
0
0
0

3.335
2.502
1.934
2.186
2.122
2.293
4.503
4.869
4.934
3.186

5.936
4.555
2.941
4.195
3.785
4.174
5.665
6.508
6.270

2.455
2.020
1.392
1.458
1.509
1.658
3.628
3.922
3.828

0.267
0.694
1.864
2.356
3.505
5.106

20.306
22.710
26.981
9.310

19
20
21
22
23
24
25
26
27

Average

13(65)
18(90)
17(85)
11(55)
16(80)
16(80)
15(75)
19(95)
16(80)

15.7(78.3)

0.263
0.070
0.063
0.187
0.093
0.044
0.038
0.014
0.053
0.092

1.442
0.946
0.623
0.785
0.600
0.327
0.262
0.285
0.375

0
0
0
0
0
0
0
0
0

2.575
2.098
1.779
2.140
2.013
1.887
3.611
3.411
3.655
2.574

4.146
3.952
3.012
3.372
3.777
2.907
5.077
4.477
4.468

1.959
1.563
1.515
1.671
1.549
1.451
2.581
2.500
2.711

0.755
1.790
3.800
4.256
6.778

10.695
43.042
49.057
58.771
19.883

The relative deviation  is computed as follows :

 


×

in which  and  denote the objective value of LRH and 
the optimal solution, respectively. Columns ,  , 
and  , give average, maximum, and minimum values of 
CPLEX run time divided by LRH run time, respectively. 
The last column gives , the average run time of LRH in 
each case.

Rows 1~9, 10~18, and 19~27 give results for 2, 5, and 
10 machines, respectively. The underlined rows following 
rows 9, 18 and 27 report the average number of optimal 
solutions out of 20,   and   for all instances involving 
2, 5, and 10 machines, respectively. 

LRH optimally solves about 78.9% of our test instances. 
For remaining instances, it provides near-optimal solutions, 

resulting in an average relative deviation over all test in-
stances of 0.06%. Column  shows that LRH solves ins-
tances about 3.7 times faster than CPLEX, on average. In 
particular, LRH solves instances that have many jobs relative 
to the number of machines much faster than CPLEX. For 
example, LRH solves case 9 about 9.8 times faster than 
CPLEX, on average.

We also compare cases in which the ratio of the number 
of old jobs to the number of new jobs is relatively high with 
cases for which the ratio is small, in particular, equal to 1. 
For this test, we adapt medium-sized cases 11, 14, and 17, 
which all have 50 new jobs but 100, 200, and 600 old jobs, 
giving ratios of 2, 4 and 12, respectively. To specify new 
cases, , , and , we change the numbers of old and 
new jobs, keeping the same total number of jobs in each 
case (150, 250 and 650, respectively), to make each ratio 
equal to 1, resulting in 75, 125, and 325 old as well as new 
jobs in these cases, respectively.
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<Table 4> Comparison of Cases  and  for   11, 14, 17

Case
Ratio

#old/#new


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)

11
14
17

2
4

12

16(80)
14(70)
13(65)

0.106
0.089
0.026

0.969
0.605
0.166

0
0
0

0.694
3.505

22.710

0.811
4.15

26.317

0.609
2.964

19.593
11d

14d

17d

1
1
1

14(70)
17(85)
15(75)

0.082 
0.019 
0.028 

0.515 
0.268 
0.321 

0 
0 
0 

0.638 
3.010 

23.575 

0.78
3.276

27.768

 0.53
2.684

19.297

<Table 5> Test Results for Cases 28, 29 and 30

Case


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)


(secs)

28
29
30

Average

2(10)
0(0)
0(0)

0.7(3.3)

0.990
0.967
1.698
1.218

3.303
3.183
6.724

    0
0.006
0.083

36.912
24.389
13.868
25.056

152.856
151.122
 79.416

4.009
4.000
4.828

 5.911
15.031
31.012
17.318

<Table 6> Comparison of Cases  and  for   28, 29, 30

Case


(#(%))


(%)


(%)


(%)


(secs)


(secs)


(secs)

28
29
30

2(10)
0(0)
0(0)

0.990
0.967
1.698

3.303
3.183
6.724

   0
0.006
0.083

5.911
15.031
31.012

6.801
17.893
36.301

4.742
10.483
26.864

28d

29d

30d

0(0)
0(0)
0(0)

1.762
1.875
1.637

6.022
3.919
4.466

0.074
0.164
0.054

5.919
15.285
31.928

  7.27
17.769
35.537

 4.617
12.293
28.174

<Table 4> assesses the difference that the ratio of the num-
ber of old jobs to the number of new jobs makes on run 
time and solution quality by comparing cases 11, 14, and 
17 with cases, , , and , respectively. Columns, 
  and  , give average, maximum, and minimum 
values of LRH run time, respectively. <Table 4> shows that 
neither the run time nor the solution quality of our heuristic 
is affected by the ratio of the number of old jobs to the 
number of new jobs, even though the ratios differ widely.

<Table 5> gives test results obtained for cases 28, 29, 
and 30. These results show that very few of instances are 
solved optimally but that average relative deviation barely 
exceeds 1%. However, LRH solves test instances about 25 
times faster than CPLEX, on average.  

We use cases of problem P(3) to test the sensitivity of 
our heuristic relative to the values of the objective function 
and the RHS coefficients. Run time of the heuristic proposed 
by Lieshout and Volgenant [12] double if the ranges of co-
efficients double. Thus, we double the values of the co-
efficients of the objective function and the RHS to define 
cases cases, , , and , respectively, then generate 

20 independent instances of each case to compare test results 
with cases 28, 29, and 30, respectively.

<Table 6> compares results associated with cases  and  
 for   28, 29, 30. The first six columns and the last 
three columns correspond to those of <Table 2> and <Table 
4>, respectively. <Table 6> shows that solution qualities (i.e.,  
  , and  ) and  for classes  and , 
  28, 29, 30 are almost the same, even though coefficients 
of the objective function and the RHS are doubled in the 
latter three cases. We have similar results for problem P(2).

5. Conclusions and Recommendations 
for Future Research

This paper addresses the problem of rescheduling on un-
related parallel machines with compressible processing times, 
where the objective is to minimize the sum of completion 
times, compression costs, and, perhaps, job reassignment costs. 
We formulate this problem as an APSC, and we introduce 
a heuristic for problems of this type.
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Tests show that our heuristic solves some 78.9% of our 
randomly generated test instances for cases 1 through 27 to 
optimality, providing near-optimal solutions for all test in-
stances, and requires much shorter run time than CPLEX, 
especially on instances of problem P(3) :   ≤  
∑ ≤ ∑. Furthermore, our tests show that our 
heuristic is not sensitive to the values of objective function 
coefficients or of the RHS coefficient of the side constraint. 
Tests show that our heuristic resolves rescheduling problems 
effectively and that it can be applied to find a good solution 
quickly for cases in which finding an optimal solution may 
require prohibitive run time. 

Our heuristic can be also applied to any problem with 
a set of constraints that possesses the unimodular property, 
augmented with a side constraint. We plan to test such nu-
merical instances. In addition to this, we will try to modify 
our heuristic to solve APSC with multiple side constraints, 
perhaps by aggregating them.
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