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Abstract 

In cryptographic applications, the key protection is 

either knowledge-based (passwords) or possession-based 

(tamper-proof device). Unfortunately, both approaches 

are easily forgotten or stolen, thus introducing various 

key management issues. By incorporating biometrics 

technologies which utilize the uniqueness of personal 

characteristics, the security of cryptosystems could 

be strengthened as authentication now requires the 

presence of the user. Biometric Cryptosystem (BC) 

encompasses the design of cryptographic keys protection 

methods by incorporating biometrics. BC involves 

either key-biometrics binding or direct key generation 

from biometrics. However, the wide acceptance and 

deployment of BC solutions are constrained by the 

fuzziness related with biometric data. Hence, error 

correction codes (ECCs) should be adopted to ensure 

that fuzziness of biometric data can be alleviated. In 

this overview paper, we present such ECC solutions 

used in various BCs. We also delineate on the important 

facts to be considered when choosing appropriate ECCs 

for a particular biometric based solution from accuracy 

performance and security perspectives.

I. Introduction 

With widespread information exchange and access 

to resources over public network, cryptography has 

become an important and necessary mechanism for 

secure channel access and authentication. The aim 

of cryptography is to provide secure transmission of 

messages so that two or more persons can communicate 

in a way that guarantees to meet the desired subset of 

the following four goals - confidentiality, data integrity, 

authentication and non-repudiation [1]. However, there 

are some practical problems associated with the use of 

cryptosystem since the current methods authenticate 

the key instead of the user. The need for a proper and 

reliable key management mechanism is required in 

order to confirm that the listed keys actually belong 

to the given entities. Currently, a manual method of 

authentication using identification card, company number 

or license, is required for enrolment of public keys. In 

addition, the security depends on the large size of a 

cryptographic secret key generated, and it is not feasible 

to require user to remember such a long key. Thus a 

simple password is still required for key encryption which 

in turn leads to continuing potential hacker attack on the 

password to retrieve the cryptographic keys.

Biometrics is the science of using unique human 

characteristics for personal authentication based on a 

person’s biological and behavioral characteristics[2]. 

Biological biometrics includes fingerprint, retina, face and 

iris features and the behavioral biometrics such as typing 

dynamic, signature and voice etc. Traditionally, biometrics 

based authentication for access into systems has always been 

yes/no decision-based depending on how “close” the test 

biometrics is to a stored template as shown in <Figure 1>. 

The template is usually obtained from the user during 

enrolment and is usually stored in a local or server-side 

storage. For local storage, normally a password is required 

for release of the template while for some challenge-

response protocol needs to be in place to enable secure 

exchange of the biometric template. The decision of how 

“close” the test biometrics is to the template is determined 
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empirically and entails tuning of a threshold.

Biometrics and cryptography have two very different 

objectives. The former is continuous and stochastics in 

nature, and its acceptance and rejection are governed 

by some empirically trained threshold. In contrast to 

biometrics, cryptography is discrete, and authentications 

are based on what is personally known like password 

and keys held in possession. Biometrics takes into 

consideration the physical presence of the user but 

however, suffers from permanently loss if compromised. 

On the other hand, cryptography has been used widely 

for securing transactions and access into systems without 

authenticating the physical presence of the user, and 

the keys used are replaceable. Both biometrics and 

cryptography are highly complementary, hence the 

motivation for their integrated application: Biometric 

Cryptosystems (BC) [3].

The notion of BC was first put forward in the mid-

90s by Tomko et al [4] and also dubbed as “Biometric 

Encryption” [5]. BC either securely bind a digital key to a 

biometrics, or generate a digital key from the biometrics, 

so that no biometric data is stored. What is stored is a 

piece of data coined as helper data. In general, helper 

data should be computationally difficult to retrieve either 

the key or the biometrics. That is, helper data should 

leak no or minimal information about key or biometrics. 

The key is recreated only if the correct biometric data is 

presented on verification. In literature, several dominant 

instances of BC are fuzzy vault, fuzzy commitment, 

secure sketch, fuzzy extractor etc.

However, the popularity of BC solutions are somewhat 

limited by the stochastics nature that associated with 

biometric data. For example, biometric data from 

an individual can vary during each capture due to 

acquisition noise and environmental condition. While 

providing evidence to the fact that biometric data cannot 

be encrypted simply as in cryptography. It is necessary 

to incorporate error tolerant mechanisms such as Error 

Correction Code (ECC) when dealing with biometric data 

to address the effect of noisy biometric inputs [6].

ECCs are commonly used to correct the errors in 

messages that are sent over noisy communication 

channels. ECCs can be defined as a set of codewords C, 

where each codeword c∈C represents an n-bit sequence 

in which the k bit messages m∈M (n>k) are mapped to 

before transmission. The (n−k) bits are dubbed as parity 

bits which used to restore the transmitted codeword 

from a corrupted received codeword. Denote size of error 

correcting capability as t, this implies that c can correct 

up to t errors, subject to the minimum distance of any 

two codewords in C is at least 2t+1. An analogy can be 

established between the noisy communication channels 

and the fuzzy biometric system whereby biometric data 

can be perceived as corrupted codewords [6]. Several 

widely deployed ECCs in BC systems are Reed Solomon 

(RS) Codes [7], Hadamard Codes [8], Binary Bose-

Chaudhuri-Hocquenghem (BCH) Codes [9], Low-Density 

Parity-Check (LDPC) Codes [10], Turbo Codes [11] or 

their combinations [8]. The choice of an ECC is one of the 

most crucial elements of BC scheme. The ECC must be 

able to remove the noise of biometric data, yet secure, i.e. 

not leaking information to an adversary.

In this paper, we outlined such ECC solution used in 

BC while explaining how they are deployed in several 

instances of BC. We will discuss the vital role of ECC 

plays in BC from accuracy performance and security 

perspectives.

II. Various ECCs Enabled Biometric 

Cryptosystems

1. Fuzzy Commitment

The fuzzy commitment scheme of Juels and Wattenberg 

Figure 1. Conventional Biometric Authentication
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[13] is inspired from extension of a cryptographic bit 

commitment [14] but it allows some variability in the 

committed value via ECCs notion. In a bit commitment 

scheme, a sender commits an encrypted version of x 
bit, denote enc(x), an encrypted version of x, in such a 

way that the receiver unable to determine the true value 

from the encrypted commitment. Bit restoration is only 

possible if sender can validate that enc(x) is an encrypted 

version of x. On the other hand, the commitment cannot 

be de-commited by anyone else since the transformation 

of x to enc(x) is only recognized to the sender.

In biometric cryptosystem context, Juels and 

Wattenberg proposed a way of committing a bit string 

c which is an encoded version of digital key by using 

ECCs. Denote a set of n bit codewords C with a minimum 

distance among them of at least 2t+1 and a same size 

biometric witness b. Then the fuzzy commitment, (d, 
h(c)) where, d = cXORb, cC, and h(c) is a one-way 

hashed version of c. Ideally, the commitment does not 

reveal information on the biometric data, since h(c) is 
a secure one-way function. In order to de-commit (d, 
h(c)), it is necessary to produce a biometric trait b’ which 

is sufficiently close to b such as the hamming distance 

between b’ and b, Hm(b’, b)≤t. In key production 

stage, we perform c’ = dXORb and if h(c) = h(c’), c 

will be decoded and a digital key k will be released else 

the process is terminated. The progression of fuzzy 

commitment can be found in <Figure 2>.

Fuzzy commitment scheme is commonly applied to 

biometric data that is represented in binary ordered 

vector form such as iris [8], face [9], texture based 

fingerprint [12] etc. An early practical work of 

applying fuzzy commitment scheme on iris biometrics 

is demonstrated by Hao et al [8]. The authors used a 

combination of two ECCs, namely Hadamard and Reed-

Solomon. The 2048-bit iris template is segmented into 

32 blocks of 64 bits each. The blocks are the codewords 

of the (64, 7) Hadamard ECC which outputs a 7-bit word 

and can correct at least 15 random bit errors. The second 

ECC, Reed-Solomon code, removes the remaining block 

level (burst) errors. It works with the 7-bit words, so 

that 32 words decode 20 output words, thus producing a 

140-bit key. The (32, 20) Reed-Solomon ECC can correct 

up to 6 erroneous 7-bit words. Despite Hao et al work 

depicts very promising results with low variability of iris 

data. However, when it was evaluated to the challenging 

ICE database, the key recovery rate is devastatingly 

deteriorated [15]. Subsequently, Bringer et al [15] 

proposed an ECC which is a product of two Reed-Muller 

ECCs, (64, 7) and (32, 6), and iterative soft decoding. 

This ECC significantly improved the accuracy of the fuzzy 

commitment scheme. Other works follows the same line 

of idea can be found in [16]-[18].

Fuzzy commitment is also particularly suitable for 

face biometrics as facial feature is typically presented in 

ordered feature vector form that can be easily binarized 

[19]-[21]. BCH codes, which are used for bit level error 

correction, are usually opted due to its simplicity. 

BCH codes have been used also by Tuyls P. et al. 

[22] in developing a fuzzy commitment scheme which 

concatenates two fingerprint texture vectors namely 

squared directional field and a finger-code obtained 

through Gabor filtering.

2. Fuzzy Vault

Fuzzy vault is introduced by Juels A. et al. [23] which 

was inspired from the Shamir’s secret sharing scheme. 

Fuzzy vault admits non-exactly ordered biometric 

representation such as minutiae-based fingerprint thus 

complement fuzzy commitment that incapable to handle 

this type of biometric data. The security of fuzzy vault 

relies completely upon the polynomial reconstruction 

problem. Figure 2. Fuzzy Commitment Scheme
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Let consider a digital key k, and during vault 

construction it is encoded into coefficients of a polynomial 

P of degree d. Then, the vault V is constructed by 

projecting a user specific n element biometric set into 

the polynomial while including c element chaff set which 

does not lie on P. Furthermore, the k is restored through 

polynomial reconstruction after identifying possible d+ 
1 out of n original points by presenting the biometric set 

during key production stage.

At enrolment, the secret message (or digital key in our 

context), k is encoded into coefficients of a secret sharing 

polynomial P(x) of degree d. The genuine shares are 

represented as point (x, y=P(x)) with x being element 

in biometric set, and are collectively known as genuine 

set G and |G|=n. Then, another set of chaff points, (a, 
b)∊C, which does not lie on P(x) is generated randomly. 

The union set of G and C forms a vault V. During key 

production stage, the k can restored through polynomial 

reconstruction after identifying possible d+ 1 out of n 
genuine points by presenting the biometric set.

A practical fuzzy vault based on fingerprint minutiae 

set realized by [24] adopts Cyclic Redundancy Check 

(CRC), an error detecting coding scheme. During 

enrollment, let k of 128 bits be the digital key to be 

bounded with fingerprint data. The CRC checksum of k 
is then computed by means of 16-bit primitive generator 

polynomial h(x) = x16+x15+x2+1. The resulting checksum 

is concatenated with k to generate a new key code, kc 
of 144 bits and encoded in 9 coefficients in Galois Field 

GF(216) of a polynomial P of degree d = 8. Each minutiae 

position (x, y) of n fingerprint minutiae is then quantized 

and coded into a 16 bit value r, in which the first 8 bits 

represents the x coordinate while y represents the rest. 

Thereafter, each r is projected into P and the genuine set 

G = {(ri, P(ri))| i=1,…n} is generated. Subsequently, a 

set of Chaff points C = {(aj, bj)| j=1,…,m} is produced in 

such a way that aj ≠ rj and bj do not lie on P. Finally, the 

randomized list of points in G∪C, {(rj, sj)| j=1,…,m+n} 

and the degree of polynomial d are kept in vault V. The 

randomization is to conceal the information that vital for 

separating chaff and genuine points.

For key production, the minutiae is extracted from 

query fingerprint image, quantized and coded to create 

a set of 16 bit string {r’i|i=1,…,n’} which are to be 

used in polynomial reconstruction. Then, the subset of 

points that lie in both r’i and sj which is the abscissa 

of V is determined. Assuming q number of such points 

have been found {(ri, si)|i = 1, 2, ..., q}; they are then 

divided into all possible (d +1) combinations, since (d+1) 

unique projection are required to decode a polynomial of 

degree d. Thereafter, for each such (d+1) pair Lagrange 

interpolation polynomial is retrieved as well as from 

the coefficients the possible kc’. Then, the polynomial 

corresponding to kc’ is divided by h(x) to evaluate the 

CRC checksum and if the remainder is zero, no errors in 

kc’ to be assumed. Finally, the k can be recovered from 

kc’ by removing the bits corresponding to the checksum. 

Thus, the digital key can only be recovered if and only 

if (d+1) points of query minutiae set match with the 

enrolled minutiae set.

Fuzzy vault security relies on the difficulty of 

separating genuine points on the vault which lie on the 

secretly embedded polynomial. If genuine points can 

be estimated, the digital key can be largely recovered 

from Lagrange interpolation. However, if the ordinate 

values of the vault is encrypted, it would forbid the 

vault decryption even having the correct set of points. 

This observation was exploited in [25] to improve the 

CRC based fuzzy fault by incorporating it with a BCH. 

Specifically, they quantized and coded fingerprint 

minutiae as afore described and then XORed with a set 

of BCH codewords, generated from the ordinate values of 

the vault to compute the fuzzy commitment. Therefore, 

key production is a two-step process of unwrapping the 

fuzzy commitment and thereafter the vault [6].

3. Secure Sketch and Fuzzy Extractor

Unlike key binding schemes such as fuzzy vault 

and fuzzy commitment, Dodis et al. [26] put forward 

a generic model of keys extraction from biometrics 

and other stochastic data. The model consists of two 

primitives, namely secure sketch and fuzzy extractor. 

The former addresses the problem of compensating noise 

in biometrics, by producing a public helper data called 
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sketch SS(w) about the biometrics. Sketch is to be used 

to recover the original template w, from noisy input 

biometrics, w’, provided both w and w’ are sufficiently 

close. The latter addresses both the problem of noise 

compensation, along with the problem of non-uniformity 

of the resulting keys.

The strength in the Dodis’s model is that the authors 

have defined the model in information-theoretic sense 

complete with the lower bound on the entropy for optimal 

security. Dodis et al also elucidated the fuzzy commitment 

and fuzzy vault using the fuzzy extractor model for 

Hamming metric (binary vector form) and set difference 

(unordered point set), respectively, and could verify the 

security ie. entropy lost via information theory. The model 

would not be directly applied to continuous metric though 

as with the model in Tuyls and Goseling [28], instead, a 

quantization process is required to convert a continuous 

feature vector into a discrete/binary vector form.

In general, four variants of secure sketch construction 

are discussed in [26]. For code-offset secure sketch 

implementation, we consider a set of n bit codewords 

C with a minimum distance at least 2t+1 and a binary 

biometric vector w of the same size. They have defined 

the shift needed to get the codeword c from w as a secure 

sketch of w, SS(w) = cXORw. It is possible to recover 

w from w’ if the dis(w, w’) ≤ t where t is a threshold 

value. The recovery process requires the computation 

of c’ = SS(w)XORw’ and decode c’ to get c to generate 

w through SS(w)XORc eventually. A realization in face 

biometrics can be found in [29].

In addition, code-offset secure sketch can be extended 

to a syndrome based secure sketch in which SS(w) is re-
defined as the syndrome of w, syn(w) = Gw, where G 

is the parity check matrix. The sketch can be restored 

by w’ and SS(w) by solving the unique error vector 

e with hamming weight ≤ t, such that syn(e) = syn-
(w’)XORSS(w) and hence w = w’XORe. A practical 

implementation dubbed fuzzy syndrome hashing is 

demonstrated in [10] whereby syndromes of Low-

Density Parity-Check (LDPC) codes are adopted for error 

correction on iris features.

Another variant of secure sketch, coined Pin Sketch is 

a primary instance for applying of BCH codes in secure 

sketch [26]. Pin Sketch adopts (n, k, d) binary BCH code 

where n is the number of bits in the codeword, k is the 

number of bits in the message while d denotes the min-

imum distance of the codewords for error correction. If 

w is the n bit biometric string to be protected, the secure 

sketch SS(w) is constructed by taking the syndrome of w, 

SS(w)=syn(w). When recovering w from a noisy biomet-

rics w’, syn(w’) is computed and thus difference set, δ= 
syn(w’) - syn(w) can be obtained. Then BCH decoding is 

used to identify vector v such that syn(v)=δ. If Hm(w’, 
w)≤(d−1)/2, w can be recovered by calculating w’+v. 

where Hm( , ) is Hamming distance [6].

Lastly, Reed-Solomon (RS) codes have also been de-

ployed in secure sketch that admits fuzzy vault. Let 

w= {wi|i=1,…,n} be n minutia of fingerprint. Then, w is 

projected into a polynomial P of degree at most (s-t-1) 

to compute s pairs V={(wi, P(wi))|i=1,…,s}. Finally the 

secure sketch SS(w) is generated by adding (r-s) chaff 

points to V that do not lie on the polynomial. In order to 

reconstruct the w from SS(w) and w’, first the points xi 

w1 that also lie in SS(w) must be identified. Then, RS de-

coding can be performed to restore the P and hence the w. 

As aforementioned, fuzzy extractor belongs to one of 

the primitives in Dodis’s key extraction model [26]. The 

fuzzy extractor consists of a secure sketch and a strong 

extractor. During enrollment, output of the strong ex-

tractor with a biometric input w generates the uniformly 

random string R while the output of the sketch is stored 

as a helper data (similar to SS(w)) that publicly avail-

able. During authentication, the helper data along with 

a close enough noisy input w’ could recover the R. The 

vital characteristic of such fuzzy extractor is that the R 
will not be stored; instead they are generated on-the-fly 

when required via w’ which is sufficiently close to w.

Similar to secure sketch, fuzzy extractor admits both 

ordered binary feature vector and unordered point set bio-

metrics such as iris, face, handwritten signature finger-

print etc. A handful realizations of fuzzy extractor include 

[31]-[34] in which they mostly applied on fingerprint mi-

nutia, iris and combination of multiple biometrics.
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4. Others

Vetro et al. [35] proposed a secure sketch alike 

biometric cryptosystem based on distributed source 

coding. A Slepian-Wolf framework is used to store a 

secured biometric template during enrollment stage 

and recover the template at authentication stage. They 

demonstrated to use LDPC codes in combination with a 

hash function to provide secure iris template storage. 

Santos et al. [36] follow same line of design as in [35] 

and put forward a universal mask which selects only the 

5142 most reliable bit positions of the 9600 bits in the iris 

templates to enhance the security of the system. 

On the other hand, Nagar et al. [37] and Sutcu et al. [38] 

developed secure fingerprint systems by using syndromes 

of LDPC codes. In their systems, fingerprint minutiae 

maps are transformed into binary vectors which are 

suitable for LDPC coding. Syndromes obtained via LDPC 

coding of these binary vectors serve as secure biometrics. 

On top of providing very low false accept rates and low 

false reject rates, the design ensures that distributed 

biometric coding is information-theoretically secure.

A turbo code enabled keys extraction scheme that 

inspired by the code-offset sketches, along with 

constellation modulation is proposed recently[39]. The 

scheme allows to set the template size without constraint 

and to manage data characterized by a high intraclass 

variability of biometric data without exploiting specific 

characteristics of the biometrics of interest. These tasks 

are accomplished by utilizing turbo codes which allows to 

achieve high ECCs, while constellation modulations are 

used to let the codes operating in soft-decoding modality, 

thus further enhancing their correction capabilities and 

providing a highly flexible framework with different 

operating conditions. A real implementation of this scheme 

has been demonstrated through handwritten signature. 

III. Impact of ECCs to Biometric 

Cryptosystems Performance

As evident from the literature, error-correcting 

codes indeed provide a powerful mechanism to cope 

with variations in biometric data. Quantitatively, the 

performance of biometric cryptosystems is commonly 

quantified via indicators such as False Acceptance rate 

(FAR) and False Rejection Rate (FRR). The FAR is the 

probability that the biometric system will incorrectly 

accept an unauthorized user. Likewise, the FRR is the 

probability that an authorized user is rejected. FAR/FRR 

is a trade-off and largely rely on the error correction 

capability with respect to bit error rate (BER) of the 

underlying ECCs used in the system. The error correcting 

capability must be sufficiently good to distinguish 

between intra-class and inter-class variability. Thus, 

before deciding on an ECC scheme it is vital to examine 

the genuine and imposter distance distribution, which 

respectively reflect intra-class and inter-class variability 

of the considered biometric information[40]. 

Linear codes such as BCH, Hadamard, RS, LDPC 

and their combinations were largely explored in the 

literature [7]-[12],[16]-[22],[25],[29],[31]-[34],[36],[38]. 

Unfortunately, these linear codes are inflexible[30]. 

Firstly, the application of linear block codes requires 

binary biometric vector having the same size of 

the employed codewords, thus some bits have to be 

discarded, or a bits-padding has to be performed. A loss 

in discriminability may occur in the former case, while 

in the latter case a severe leakage of information about 

codewords can result from the observation of the code-

offset[48]. It is vital to adopt codewords whose length can 

be adjusted to the length of binary biometric vector, and 

not vice versa. A promising solution is by using Turbo 

code as reported in [39].

Secondly, linear block codes often incapable offer 

high satisfactory error correction capability to cope 

biometric data with significant intra-class variability, 

thus resulting in poor FRRs. Ideally the error correcting 

capability must be 100 % even for highest possible 

distance (or BER) while exhibiting 0% for inter-class BER 

[6]. This procedure would help in identifying the most 

suitable ECC for a BC in the early stage. Nevertheless, 

these ideal situations are highly unlikely be satisfied 

practically, hence fine tuning is necessary for the selected 
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ECC to ensure it can adequately differentiate between the 

two classes. As a remedy it could be possible to utilize 

known statistics about the existing differences of the 

considered biometrics to design a specific code adapted 

to the biometrics properties. This property has been 

exploited in [8], where Hadamard and Reed-Solomon 

codes are jointly employed to manage respectively the 

background and the burst differences deriving from the 

comparison of two iris templates. However, as observed 

in [15], the performance deteriorates when a more 

challenging iris dataset is examined.

In general, the impact of ECC on biometric 

cryptosystem performance relies on the type of the 

chosen ECCs as well as how to fine tune the selected 

ECC. The latter could be attained by altering the code 

rate (increasing or decreasing the amount of parity bits) 

included in the ECC. The effect on the error correcting 

capability with the code rate is known as the granular 

effect of an ECC. The finer it is possible to tune the ECC’s 

correction capability, the more precisely it will be possible 

to adjust the FAR and FRR trade-off.

Furthermore, an ideal ECC should have a steep roll off 

characteristic with BER to allow a very high (close to 

100%) error correction in a particular range and almost 

0% in the other [6]. Hence, apart from the granularity 

property, the steepness property is also another important 

factor to be accounted. Interested readers on empirical 

study of granular effect and steepness properties of ECCs 

on biometric system are referred to [40].

IV. Impact of ECC to Biometric 

Cryptosystem Security

Despite biometric cryptosystems is provable secure in 

information theoretic sense, it is indeed vulnerable to 

several dreadful security and privacy attacks in practice. 

We refer curious readers on complete vulnerabilities of 

BC to [41]-[47]. Here we only describe a few attacks that 

have been attributed to ECCs.

Note ECCs security does not appear in most other ECC 

applications, such as data storage or communication 

system, but this is not the case for BC. For instance, ECC 

that is insecure for BC purposes is a trivial repetition 

code, when each key bit is encoded with an odd number 

of bits of the same parity [48]. As shown by [49], an 

adversary can generate a matching score and crack the 

BC helper data using a “hill climbing” attack despite BC 

is not supposed to have a score.

If we assume that the codeword c is chosen from an 

(n, k, t) ECC then k bits of biometric binary vector, b 

are protected by the k random bits in c due to the k bits 

of randomness in c. From information theoretic point 

of view, the helper data of BC, such as d = cXORb in 

fuzzy commitment or SS(w) in secure sketch will leak 

n-k bits of information about b. It can be shown that if 

robustness against a certain number of bit errors in b is 

required, some leakage cannot be avoided [26]. Hence, 

in principle the adversary can set up a linear system of 

n-k equations in n unknowns leaving him with k degrees 

of freedom. However, this theoretical leakage does not 

reveal to an adversary how this information can be 

exploited to learn specific information on b that was used 

to generate helper data. 

A number of practical threats were reported in [46], 

[48] and [50] exploiting the use of linear ECCs and the 

fact that many practical ECCs are not perfect codes. In 

[46], the authors demonstrates that if two helper data 

d1=c1XORb and d2=c2XORb’ of fuzzy commitment 

are retrieved, the adversary can compute d1XORd2=
c1XORc2XOR(bXORb’)=c3XOR(bXORb’) due to the 

ECC property that the sum of two codewords is again 

a codeword. If this can be decoded, it is highly possible 

that b≃b’, attributed to the non-perfectness of the ECC 

and the distribution of b. This observation thus implies 

bs are linkable across diverse applications or databases, 

which is one of the major concerns in privacy leakage.

Stoianov [48] illustrated zero insertion mechanism that 

proposed by Kanade et al [18] to improve the accuracy of 

IrisCode based fuzzy commitment [8] is indeed insecure. 

By learning the locations of only 7 zeros for each 32-

bit block, an attacker can recover the full 198-bit key 

within a fraction of a second. Even if the scheme were 
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modified such that 12 zeros appended the IrisCode in 

each 32-bit block, for each block, the attacker would still 

be able to recover 5 out of 6 key bits. The remaining one 

bit ambiguity could be resolved in a matter of minutes 

by random trials and running a Reed-Solomon decoder. 

By and far, for an arbitrary linear ECC, the problem 

of cracking the zero insertion scheme is equivalent to 

solving a set of linear equations by using a syndrome 

decoding.

Despite a combination of codes could be useful for 

accuracy performance gain, eg. mix of Hadamard and 

RS codes in [8], it may also leave the system vulnerable 

to statistical attacks by exploiting the histograms of 

the computed offsets as revealed in [50]. The statistical 

attack based on ECCs is further examined in [52] in 

great detail whereby the authors reveal that binary 

biometric vectors, which exhibit sufficient entropy, 

bind cryptographic keys in a secure commitment is 

questionable. The study shows that fuzzy commitment 

can still be cracked. The structure of stored commitment 

is essential to the security of bound keys and biometric 

templates.

V. Summary

Error correction codes are an integrated part in 

most of the biometric cryptosystems to eliminate the 

fuzziness associated with biometric data. This overview 

paper delineates how ECCs are setup to achieve the 

accuracy performance requirements of various biometric 

cryptosystems. Depending upon the type of biometric 

data to be used and their associated error patterns, 

the ECCs must be selected attentively, considering the 

possible security and privacy breach of the underlying 

biometric cryptosystem. Moreover, error correcting 

capability characteristics and granularity of ECCs 

should also be considered when choosing the optimal 

coding scheme to achieve a desirable tradeoff between 

performance indicators FAR and FRR.
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