DOI QR코드

DOI QR Code

Amphiphilic graft copolymers: Effect of graft chain length and content on colloid gel

  • Nitta, Kyohei (Department of Life and Functional Material Science, Graduate School of Natural Science, Konan University) ;
  • Kimoto, Atsushi (Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University) ;
  • Watanabe, Junji (Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University) ;
  • Ikeda, Yoshiyuki (Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University)
  • 투고 : 2015.04.24
  • 심사 : 2015.06.09
  • 발행 : 2015.06.25

초록

A series of amphiphilic graft copolymers were synthesized by varying the number of graft chains and graft chain lengths. The polarity of the hydrophobic graft chain on the copolymers was varied their solution properties. The glass transition temperature of the copolymers was in the low-temperature region, because of the amorphous nature of poly (trimethylene carbonate) (PTMC). The surface morphology of the lyophilized colloid gel had a bundle structure, which was derived from the combination of poly(N-hydroxyethylacrylamide)( poly(HEAA)) and PTMC. The solution properties were evaluated using dynamic light scattering and fluorescence measurements. The particle size of the graft copolymers was about 30-300 nm. The graft copolymers with a higher number of repeating units attributed to the TMC (trimethylene carbonate) component and with a lower macromonomer ratio showed high thermal stability. The critical association concentration was estimated to be between $2.2{\times}10^{-3}$ and $8.9{\times}10^{-2}mg/mL$, using the pyrene-based fluorescence probe technique. These results showed that the hydrophobic chain of the graft copolymer having a long PTMC segment had a low polarity, dependent on the number of repeating units of TMC and the macromonomer composition ratio. These results demonstrated that a higher number of repeating units of TMC, with a lower macromonomer composition, was preferable for molecular encapsulation.

키워드

참고문헌

  1. Amsden, B.G., Misra, G., Gu, F. and Younes, H.M. (2004), "Synthesis and characterization of a photo-crosslinked biodegradable elastomer", Biomacromolecules, 5(6), 2479-2486. https://doi.org/10.1021/bm049578h
  2. Andronova, N. and Albertsson, A.C. (2006), "Resilient bioresorbable copolymers based on trimethylene carbonate, L-lactide, and 1,5-dioxepan-2-one", Biomacromolecules, 7(5), 1489-1495. https://doi.org/10.1021/bm060081c
  3. Atthoff, B., Nederberg, F., Soderberg, L., Hilborn, J. and Bowden, T. (2006), "Synthetic biodegradable ionomers that engulf, store, and deliver intact proteins", Biomacromolecules, 7(8), 2401-2406. https://doi.org/10.1021/bm060396s
  4. Bisht, K.S., Deng, F., Gross, R.A., Kaplan, D.L. and Swift, G. (1998), "Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization", J. Am. Chem. Soc., 120(7), 1363-1367. https://doi.org/10.1021/ja972391w
  5. Buwalda, S.J., Perez, L.B., Teixeira, S., Calucci, L., Forte, C., Feijien, J. and Dijkstra, P.J. (2011), "Selfassembly and photo-cross-linking of eight-armed PEG-PTMC star block copolymers", Biomacromolecules, 12(9), 2746-2754. https://doi.org/10.1021/bm200515h
  6. Chandler-Temple, A.F., Wentrup-Byrne, E., Griesser, H.J., Jasienia, Whittaker, A.K. and Grondahl, L. (2010), "Comprehensive characterization of grafted expanded poly(tetrafluoroethylene) for medical applications", Langmuir, 26(19), 15409-15417. https://doi.org/10.1021/la1010677
  7. Cho, J.S., Kim, B.S., Hyun, H., Youn, J.Y., Kim, M.S., Ko, J.H., Park, Y.H., Khang, G. and Lee, H.B. (2008), "Precise preparation of four-arm-poly(ethylene glycol)-block-poly(trimethylene carbonate) star block copolymers via activated monomer mechanism and examination of their solution properties", Polymer, 49(7), 1777-1782. https://doi.org/10.1016/j.polymer.2008.02.030
  8. Dove, A.P. (2012), "Organic catalysis for ring-opening polymerization", ACS Macro Lett., 1(12), 1409-1412. https://doi.org/10.1021/mz3005956
  9. Hyun, H., Lee, J.W., Cho, J.S., Kim, Y.H., Lee, C.R., Kim, M,S., Khang, G. and Lee, H.B. (2008), "Polymeric nano-micelles using poly(ethylene glycol) and poly(trimethylene carbonate) diblock copolymers as a drug carrier", Colloids Surf., A: Physicochem. Eng. Aspects, 313-314(1), 131-135. https://doi.org/10.1016/j.colsurfa.2007.05.078
  10. Ishihara, K., Iwasaki, Y. and Nakabayashi, N. (1999), "Polymeric lipid nanosphere consisting of watersoluble poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)", Polym. J., 31(12), 1231-1236. https://doi.org/10.1295/polymj.31.1231
  11. Kim, C., Lee, S.C., Shin, J.H., Yoon, J.S., Kwon, I.C. and Jeong, S.Y. (2000), "Amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and poly(1,3-trimethylene carbonate): synthesis and micellar characteristics", Macromolecules, 33(20), 7448-7452. https://doi.org/10.1021/ma000517v
  12. Kim, M.S., Hyun, H., Khang, G. and Lee, H.B. (2006), "Preparation of thermosensitive diblock copolymers consisting of MPEG and polyesters", Macromolecules, 39(9), 3099-3102. https://doi.org/10.1021/ma052713d
  13. Kim, S.H., Tam, J.P K., Nederberg, F., Fukushima, K. Yang, Y.Y., Waymouth, R.M. and Hedrick, J.L. (2009), "Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers", Macromolecules, 42(1), 25-29. https://doi.org/10.1021/ma801739x
  14. Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V.P. and Supaphol, P. (2009), "Immobilization of biomolecules on the surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering", ACS Appl. Mater. Interfaces, 1(5), 1076-1085. https://doi.org/10.1021/am900048t
  15. Mindemark, J., Hilborn, J. and Bowden, T. (2007), "End-group-catalyzed ring-opening polymerization of trimethylene carbonate", Macromolecules, 40(10), 3515-3517. https://doi.org/10.1021/ma0629081
  16. Nam, K.W., Watanabe, J. and Ishihara, K. (2002), "Characterization of the spontaneously forming hydrogels composed of water-soluble phospholipid polymers", Biomacromolecules, 3(1), 100-105. https://doi.org/10.1021/bm015589o
  17. Nederberg, F., Lohmeijer, B.G.G., Leibfarth, F., Pratt, R.C., Choi, J., Dove, A.P., Waymouth, R.M. and Hedrick, J.L. (2007a), "Organocatalytic ring opening polymerization of trimethylene carbonate", Biomacromolecules, 8(1), 153-160. https://doi.org/10.1021/bm060795n
  18. Nederberg, F., Trang, V., Pratt, R.C., Mason, A.F., Frank, C.W., Waymouth, R.M. and Hedrick, J.L. (2007b), "New ground for organic catalysis: a ring-opening polymerization approach to hydrogels", Biomacromolecules, 8(11), 3294-3297. https://doi.org/10.1021/bm700895d
  19. Nitta, K., Miyake, J., Watanabe, J. and Ikeda, Y. (2012a), "Synthesis of functional macromonomers with oligo segment of polycarbonate for biomaterials", Trans. Mater. Res. Soc. Jpn, 37(3), 349-352. https://doi.org/10.14723/tmrsj.37.349
  20. Nitta, K., Miyake, J., Watanabe, J. and Ikeda, Y. (2012b), "Gel formation driven by tunable hydrophobic domain: design of acrylamide macromonomer with oligo hydrophobic segment", Biomacromolecules, 13(4), 1002-1009. https://doi.org/10.1021/bm201703y
  21. Siegel, R.A. and Pitt, C.G. (1995), "A strategy for oscillatory drug release general scheme and simplified theory", J. Control. Release, 33(1), 173-188. https://doi.org/10.1016/0168-3659(94)00082-6
  22. Shibasaki, Y., Sanada, H., Yokoi, M., Sanda, F. and Endo, T. (2000), "Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with sevenmembered cyclic carbonate", Macromolecules, 33(12), 4316-4320. https://doi.org/10.1021/ma992138b
  23. Srivastava, R.K. and Albertsson, A.C. (2007), "Microblock copolymers as a result of transesterification catalyzing behavior of lipase CA in Sequential ROP", Macromolecules, 40(13), 4464-4469. https://doi.org/10.1021/ma0701179
  24. Terao, K., Miyake, J., Watanabe, J. and Ikeda, Y. (2012), "Regulation of protein loading on poly(trimethylene carbonate), poly(L-lactic acid), and their copolymer: effect of surface enrichment by polymer crystallinity", Mater. Sci. Eng. C, 27(9), 1741-1748.
  25. Tosaki, Y., Miyake, J., Watanabe, J. and Ikeda, Y. (2011), "Design of poly(trimethylene carbonate) with hydrophilic polymer chain and its aggregation property", Trans. Mater. Res. Soc. Jpn, 36(4), 565-568. https://doi.org/10.14723/tmrsj.36.565
  26. Tyson, T., Finne-Wistrand, A. and Albertsson, A.C. (2009), "Degradable porous scaffolds from various Llactide and trimethylene carbonate copolymers obtained by a simple and effective method", Biomacromolecules, 10(1), 149-154. https://doi.org/10.1021/bm801052m
  27. Watanabe, J., Amemori, S. and Akashi, M. (2008), "Disparate polymerization facilitates the synthesis of versatile block copolymers from poly(trimethylene carbonate)", Polymer, 49(17), 3709-3715. https://doi.org/10.1016/j.polymer.2008.06.034
  28. Watanabe, J., Kotera, H. and Akashi, M. (2007), "Reflexive interfaces of poly(trimethylene carbonate)-based polymers: enzymatic degradation and selective adsorption", Macromolecules, 40(24), 8731-8736. https://doi.org/10.1021/ma071030q
  29. Wilhelm, M., Zhao, C.L., Wang, Y., Xu, R., Winnik, M.A., Mura, J.L., Riess, G. and Croucher, M.D. (1991), "Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study", Macromolecules, 24(5), 1033-1040. https://doi.org/10.1021/ma00005a010
  30. Zhang, Z., Kuijer, R., Bulstra, S.K., Grijpma, D.W. and Feijen, J. (2006), "The in vivo and in vitro degradation behavior of poly(trimethylene carbonate)", Biomater., 27(9), 1741-1748. https://doi.org/10.1016/j.biomaterials.2005.09.017
  31. Zheng, F., Liu, J. and Allen, C. (2004), "Synthesis and characterization of biodegradable poly(ethylene glycol)-block-poly(5-benzyloxy-trimethylene carbonate) copolymers for drug delivery", Biomacromolecules, 5(5), 1810-1817. https://doi.org/10.1021/bm049836a