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THE COMPOSITION SERIES OF IDEALS OF THE

PARTIAL-ISOMETRIC CROSSED PRODUCT BY

SEMIGROUP OF ENDOMORPHISMS

Sriwulan Adji and Saeid Zahmatkesh

Abstract. Let Γ+ be the positive cone in a totally ordered abelian group
Γ, and α an action of Γ+ by extendible endomorphisms of a C∗-algebra
A. Suppose I is an extendible α-invariant ideal of A. We prove that the

partial-isometric crossed product I := I×
piso
α Γ+ embeds naturally as an

ideal of A×
piso
α Γ+, such that the quotient is the partial-isometric crossed

product of the quotient algebra. We claim that this ideal I together with

the kernel of a natural homomorphism φ : A×
piso
α Γ+ → A×iso

α
Γ+ gives

a composition series of ideals of A ×
piso
α Γ+ studied by Lindiarni and

Raeburn.

1. Introduction

Let (A,Γ+, α) be a dynamical system consisting of the positive cone Γ+ in
a totally ordered abelian group Γ, and an action α : Γ+ → EndA of Γ+ by
extendible endomorphisms of a C∗-algebra A. A covariant representation of
the system (A,Γ+, α) is defined for which the semigroup of endomorphisms
{αs : s ∈ Γ+} are implemented by partial isometries, and then the associ-
ated partial-isometric crossed product C∗-algebra A ×piso

α Γ+, generated by a
universal covariant representation, is characterized by the property that its
nondegenerate representations are in a bijective correspondence with covariant
representations of the system. This generalizes the covariant isometric repre-
sentation theory: the theory that uses isometries to represent the semigroup
of endomorphisms in a covariant representation of the system. We denoted by
A×iso

α Γ+ for the corresponding isometric crossed product.
Suppose I is an extendible α-invariant ideal of A, then a + I 7→ αx(a) + I

defines an action of Γ+ by extendible endomorphisms of the quotient algebra
A/I. It is well-known that the isometric crossed product I×iso

α Γ+ sits naturally
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as an ideal in A×iso
α Γ+ such that (A×iso

α Γ+)/(I ×iso
α Γ+) ≃ A/I ×iso

α Γ+. We
show that this result is valid for the partial-isometric crossed product.

Moreover if φ : A×piso
α Γ+ → A×iso

α Γ+ is the natural homomorphism given
by the canonical universal covariant isometric representation of (A,Γ+, α) in
A ×iso

α Γ+, then kerφ together with the ideal I ×piso
α Γ+ give a composition

series of ideals of A×piso
α Γ+, from which we recover the structure theorems of

[7]. Let us now consider the framework of [7]. A system that consists of the
C∗-subalgebra A := BΓ+ of ℓ∞(Γ+) spanned by the functions 1s satisfying

1s(t) =

{

1 if t ≥ s
0 otherwise,

and the action τ : Γ+ → EndBΓ+ given by the translation on ℓ∞(Γ+). We
choose an extendible τ -invariant ideal I to be the subalgebra BΓ+,∞ spanned

by {1x − 1y : x < y ∈ Γ+}. Then the composition series of ideals of BΓ+ ×piso
τ

Γ+, that is given by the two ideals kerφ and BΓ+,∞ ×piso
τ Γ+, produces the

large commutative diagram in [7, Theorem 5.6]. This result shows that the
commutative diagram in [7, Theorem 5.6] exists for any totally ordered abelian
subgroup (not only for subgroups of R), and that we understand clearly where
the diagram comes from.

Next, if we consider a specific semigroup Γ+ such as the additive semigroup
N in the group of integers Z, then the large commutative diagram gives a
clearer information about the ideals structure of c×piso

τ N. We can identify that
the left-hand and top exact sequences in diagram [7, Theorem 5.6] are indeed
equivalent to the extension of the algebra K(ℓ2(N, c0)) of compact operators on
the Hilbert module ℓ2(N, c0) by K(ℓ2(N)) provided by the algebraK(ℓ2(N, c)) of
compact operators on ℓ2(N, c). Moreover it is known that PrimK(ℓ2(N, c)) ≃
Prim(K(ℓ2(N)) ⊗ c) ≃ Prim c is homeomorphic to N ∪ ∞. Together with a
knowledge about the primitive ideal space of the Toeplitz C∗-algebra generated
by the unilateral shift, our theorem on the composition series of ideals of c×piso

τ

N provides a complete description of the topology on the primitive ideal space
of c×piso

τ N.
We begin with a section containing background material about the partial-

isometric crossed product by semigroups of extendible endomorphisms. In Sec-
tion 3, we prove the existence of a short exact sequence of partial-isometric
crossed products, which generalizes [2, Theorem 2.2] of the semigroup N. Then
we consider this and the other natural exact sequence described earlier in [4],
to get the composition series of ideals in A×piso

α Γ+.
We proceed to Section 4 by applying our results in Section 3 to the dis-

tinguished system (BΓ+ ,Γ+, τ) and the extendible τ -invariant ideal BΓ+,∞ of
BΓ+ . It can be seen from our Proposition 4.1 that the large commutative dia-
gram of [7, Theorem 5.6] remains valid for any subgroup Γ of a totally ordered
abelian group. Finally in the last section we describe the topology of primitive
ideal space of c×piso

τ N by using this large diagram.
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2. Preliminaries

A bounded operator V on a Hilbert spaceH is called an isometry if ‖V (h)‖ =
‖h‖ for all h ∈ H , which is equivalent to V ∗V = 1. A bounded operator V on a
Hilbert space H is called a partial isometry if it is isometry on (kerV )⊥. This
is equivalent to V V ∗V = V . If V is a partial isometry, then so is the adjoint
V ∗, where as for an isometry V , the adjoint V ∗ may not be an isometry unless
V is unitary. Associated to a partial isometry V , there are two orthogonal
projections V ∗V and V V ∗ on the initial space (kerV )⊥ and on the range V H
respectively. In a C∗-algebra A, an element v ∈ A is called an isometry if
v∗v = 1 and a partial isometry if vv∗v = v.

An isometric representation of Γ+ on a Hilbert space H is a map S : Γ+ →
B(H) which satisfies Sx := S(x) is an isometry, and Sx+y = SxSy for all
x, y ∈ Γ+. So an isometric representation of N is determined by a single
isometry S1. Similarly a partial-isometric representation of Γ+ on a Hilbert
space H is a map V : Γ+ → B(H) which satisfies Vx := V (x) is a partial
isometry, and Vx+y = VxVy for all x, y ∈ Γ+. Note that the product VW
of two partial isometries V and W is a partial isometry precisely when V ∗V
commutes with WW ∗ [7, Proposition 2.1]. Thus a partial isometry V is called
a power partial isometry if V n is a partial isometry for every n ∈ N, so a
partial-isometric representation of N is determined by a single power partial
isometry V1. If V is a partial-isometric representation of Γ+, then every VxV

∗
x

commutes with VtV
∗
t , and so does V ∗

x Vx with V ∗
t Vt.

Now we consider a dynamical system (A,Γ+, α) consisting of a C∗-algebra
A, an action α of Γ+ by endomorphisms of A such that α0 = id. Because we
deal with non unital C∗-algebras and non unital endomorphisms, we require
every endomorphism αx to be extendible to a strictly continuous endomorphism
αx on the multiplier algebra M(A) of A. This happens precisely when there
exists an approximate identity (aλ) in A and a projection pαx

∈ M(A) such
that αx(aλ) converges strictly to pαx

in M(A).

Definition 2.1. A covariant isometric representation of (A,Γ+, α) on a Hilbert
space H is a pair (π, S) of a nondegenerate representation π : A→ B(H) and
an isometric representation of S : Γ+ → B(H) such that π(αx(a)) = Sxπ(a)S

∗
x

for all a ∈ A and x ∈ Γ+.
An isometric crossed product of (A,Γ+, α) is a triple (B, jA, jΓ+) consisting

of a C∗-algebra B, a canonical covariant isometric representation (jA, jΓ+) in
M(B) which satisfies the following:

(i) for every covariant isometric representation (π, S) of (A,Γ+, α) on a
Hilbert space H , there exists a nondegenerate representation π × S :
B → B(H) such that (π × S) ◦ jA = π and (π × S) ◦ jΓ+ = S; and

(ii) B is generated by jA(A) ∪ jΓ+(Γ+), we actually have

B = span{jΓ+(x)∗jA(a)jΓ+(y) : x, y ∈ Γ+, a ∈ A}.
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Note that a given system (A,Γ+, α) could have a covariant isometric repre-
sentation (π, S) only with π = 0. In this case the isometric crossed product
yields no information about the system. If a system admits a non trivial co-
variant representation, then the isometric crossed product does exist, and it is
unique up to isomorphism: if there is such a covariant isometric representation
(tA, tΓ+) of (A,Γ+, α) in a C∗-algebra C, then there is an isomorphism of C
onto B which takes (tA, tΓ+) into (jA, jΓ+). Thus we write the isometric crossed
product B as A×iso

α Γ+.

The partial-isometric crossed product of (A,Γ+, α) is defined in a similar
fashion involving partial-isometries instead of isometries.

Definition 2.2. A covariant partial-isometric representation of (A,Γ+, α) on
a Hilbert space H is a pair (π, S) of a nondegenerate representation π : A →
B(H) and a partial-isometric representation S : Γ+ → B(H) of Γ+ such that
π(αx(a)) = Sxπ(a)S

∗
x for all a ∈ A and x ∈ Γ+. See in Remark 2.3 that this

equation implies S∗
xSxπ(a) = π(a)S∗

xSx for a ∈ A and x ∈ Γ+. Moreover, [7,
Lemma 4.2] shows that every (π, S) extends to a partial-isometric covariant
representation (π, S) of (M(A),Γ+, α), and the partial-isometric covariance is
equivalent to π(αx(a))Sx = Sxπ(a) and SxS

∗
x = π(αx(1)) for a ∈ A and x ∈ Γ+.

A partial-isometric crossed product of (A,Γ+, α) is a triple (B, jA, jΓ+) con-
sisting of a C∗-algebra B, a canonical covariant partial-isometric representation
(jA, jΓ+) in M(B) which satisfies the following:

(i) for every covariant partial-isometric representation (π, S) of (A,Γ+, α)
on a Hilbert space H , there exists a nondegenerate representation
π × S : B → B(H) such that (π × S) ◦ jA = π and (π × S) ◦ jΓ+ = S;
and

(ii) B is generated by jA(A) ∪ jΓ+(Γ+), we actually have

B = span{jΓ+(x)∗jA(a)jΓ+(y) : x, y ∈ Γ+, a ∈ A}.

Unlike the theory of isometric crossed product: every system (A,Γ+, α) admits
a non trivial covariant partial-isometric representation (π, S) with π faithful
[7, Example 4.6]. In fact [7, Proposition 4.7] shows that a canonical covariant
partial-isometric representation (jA, jΓ+) of (A,Γ+, α) exists in the Toeplitz
algebra TX associated to a discrete product system X of Hilbert bimodules over
Γ+, which (i) and (ii) are fulfilled, and it is universal: if there is such a covariant
partial-isometric representation (tA, tΓ+) of (A,Γ+, α) in a C∗-algebra C that
satisfies (i) and (ii), then there is an isomorphism of C onto B which takes
(tA, tΓ+) into (jA, jΓ+). Thus we write the partial-isometric crossed product B
as A×piso

α Γ+.

Remark 2.3. Our special thanks go to B. Kwaśniewski for showing us the proof
arguments in this remark. Assuming (π, S) is covariant, then by C∗-norm
equation we have ‖π(a)S∗

x − S∗
xπ(αx(a))‖ = 0, therefore π(a)S∗

x = S∗
xπ(αx(a))

for all a ∈ A and x ∈ Γ+, which means that Sxπ(a) = π(αx(a))Sx for all
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a ∈ A and x ∈ Γ+. So S∗
xSxπ(a) = S∗

xπ(αx(a))Sx = (π(αx(a
∗))Sx)

∗Sx =
(Sxπ(a

∗))∗Sx = π(a)S∗
xSx.

More details on the proof are available in [6, Lemma 1.2].

3. The short exact sequence of partial-isometric crossed products

Theorem 3.1. Suppose that (A×piso
α Γ+, iA, V ) is the partial-isometric crossed

product of a dynamical system (A,Γ+, α), and I is an extendible α-invariant
ideal of A. Then there is a short exact sequence

(3.1) 0 I ×piso
α Γ+ A×piso

α Γ+ A/I ×piso
α̃ Γ+ 0,✲ ✲

µ
✲
γ

✲

where µ is an isomorphism of I ×piso
α Γ+ onto the ideal

D := span{V ∗
x iA(i)Vy : i ∈ I, x, y ∈ Γ+} of A×piso

α Γ+.

If q : A→ A/I is the quotient map, iI , W denote the maps I → I×piso
α Γ+, W :

Γ+ →M(I ×piso
α Γ+), and similarly for iA/I , U the maps A/I → A/I ×piso

α̃ Γ+,

Γ+ →M(A/I ×piso
α̃ Γ+), then

µ ◦ iI = iA|I , µ ◦W = V and γ ◦ iA = iA/I ◦ q, γ ◦ V = U.

Proof. We make some minor adjustment to the proof of [1, Theorem 3.1] for
partial isometries. First, we check that D is indeed an ideal of A×piso

α Γ+. Let
ξ = V ∗

x iA(i)Vy ∈ D. Then V ∗
s ξ is trivially contained in D, and computations

below show that iA(a)ξ and Vsξ are all in D for a ∈ A and s ∈ Γ+:

iA(a)ξ = iA(a)V
∗
x iA(i)Vy = (VxiA(a

∗))∗iA(i)Vy

= (iA(αx(a
∗))Vx)

∗iA(i)Vy = V ∗
x iA(αx(a)i)Vy ;

Vsξ = VsV
∗
x iA(i)Vy = Vs(V

∗
s VsV

∗
x Vx)V

∗
x iA(i)Vy

= VsV
∗
u VuV

∗
x iA(i)Vy, u := max{s, x}

= (VsV
∗
s V

∗
u−s)(Vu−xVxV

∗
x )iA(i)Vy = V ∗

u−s(VuV
∗
u VuV

∗
u )(Vu−xiA(i))Vy

= V ∗
u−sVuV

∗
u iA(αu−x(i))Vu−xVy = V ∗

u−siA(αu(1))iA(αu−x(i))Vu−x+y .

This ideal D gives us a nondegenerate homomorphism ψ : A ×piso
α Γ+ →

M(D) which satisfies ψ(ξ)d = ξd for ξ ∈ A ×piso
α Γ+ and d ∈ D. Let jI :

I
iA−→ A ×piso

α Γ+ ψ
−→ M(D), and S : Γ+ V

−→ M(A ×piso
α Γ+)

ψ
−→ M(D). We

use extendibility of ideal I to show jI is nondegenerate. Take an approximate
identity (eλ) for I, and let ϕ : A → M(I) be the homomorphism satisfying
ϕ(a)i = ai for a ∈ A and i ∈ I. Then iA(αs(eλ)i) converges in norm to
iA(ϕ(αs(1M(A)))i). However

iA(ϕ(αs(1M(A)))i) = iA(αs(1M(A)))iA(i) = VsV
∗
s iA(i).

So iA(αs(eλ)i) converges in norm to VsV
∗
s iA(i). Since jI(eλ)V

∗
s iA(i)Vt =

V ∗
s iA(αs(eλ)i)Vt by covariance, it follows that jI(eλ)V

∗
s iA(i)Vt converges in

norm to V ∗
s iA(i)Vt. We can similarly show that V ∗

s iA(i)VtjI(eλ) converges in
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norm to V ∗
s iA(i)Vt. Thus jI(eλ) → 1M(D) strictly, and hence jI is nondegen-

erate.
We claim that the triple (D, jI , S) is a partial-isometric crossed product of

(I,Γ+, α). A routine computations show the covariance of (jI , S) for (I,Γ
+, α).

Suppose now (π, T ) is a covariant representation of (I,Γ+, α) on a Hilbert space

H . Let ρ : A
ϕ

−→ M(I)
π

−→ B(H). Then by extendibility of ideal I, that is

α|I ◦ ϕ = ϕ ◦ α, the pair (ρ, T ) is a covariant representation of (A,Γ+, α). The
restriction (ρ × T )|D to D of ρ × T is a nondegenerate representation of D

which satisfies the requirement (ρ×T )|D ◦ jI = π and (ρ× T )|D ◦S = T . Thus
the triple (D, jI , S) is a partial-isometric crossed product for (I,Γ+, α), and we
have the homomorphism µ = iA|I × V .

Next we show the exactness. Let Φ be a nondegenerate representation of
A×piso

α Γ+ with kernelD. Since I ⊂ kerΦ◦iA, we can have a representation Φ̃ of
A/I, which together with Φ◦V is a covariant partial-isometric representation of

(A/I,Γ+, α̃). Then Φ̃× (Φ◦V ) lifts to Φ, and therefore ker γ ⊂ kerΦ = D. �

Corollary 3.2. Let (A,Γ+, α) be a dynamical system, and I an extendible

α-invariant ideal of A. Then there is a commutative diagram:

0 0 0

0 kerφI I ×piso
α Γ+ I ×iso

α Γ+ 0

0 kerφA A×piso
α Γ+ A×iso

α Γ+ 0

0 kerφA/I A/I ×piso
α̃ Γ+ A/I ×iso

α̃ Γ+ 0

0 0 0

φI

µ µiso

φA

γ γiso
φA/I

Proof. The three row exact sequences follow from [4], the middle column from
Theorem 3.1 and the right column exact sequence from [1]. By inspection on
the spanning elements, one can see that µ(kerφI) is an ideal of kerφA and
µiso ◦ φI = φA ◦ µ, thus first and second rows commute. Then Snake Lemma
gives the commutativity of all rows and columns. �

4. The example

We consider a dynamical system (BΓ+ ,Γ+, τ) consisting of a unital C∗-
subalgebra BΓ+ of ℓ∞(Γ+) spanned by the set {1s : s ∈ Γ+} of characteristic
functions 1s of {x ∈ Γ+ : x ≥ s}, the action τ of Γ+ on BΓ+ is given by
τx(1s) = 1s+x. The ideal BΓ+,∞ = span{1i − 1j : i < j ∈ Γ+} is an extendible
τ -invariant ideal of BΓ+ . Then we want to show in Proposition 4.1 that an
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application of Corollary 3.2 to the system (BΓ+ ,Γ+, τ) and the ideal BΓ+,∞

gives [7, Theorem 5.6].
The crossed product BΓ+ ×iso

τ Γ+ is a universal C∗-algebra generated by the
canonical isometric representation t of Γ+: every isometric representation w of
Γ+ gives a covariant isometric representation (πw, w) of (BΓ+ ,Γ+, τ). Suppose
{εx : x ∈ Γ+} is the usual orthonormal basis in ℓ2(Γ+), and let Ts(εx) = εx+s
for every s ∈ Γ+. Then s 7→ Ts is an isometric representation of Γ+, and the
Toeplitz algebra T (Γ) is the C∗-subalgebra of B(ℓ2(Γ+)) generated by {Ts :
s ∈ Γ+}. So there exists a representation T := πT ×T of BΓ+ ×iso

τ Γ+ on ℓ2(Γ+)
such that T(tx) = Tx and T(1x) = TxT

∗
x for all x ∈ Γ+. This representation

is faithful by [3, Theorem 2.4]. Thus BΓ+ ×iso
τ Γ+ and the Toeplitz algebra

T (Γ) = πT × T (BΓ+ ×iso
τ Γ+) are isomorphic, and the isomorphism takes the

ideal BΓ+,∞×iso
τ Γ+ of BΓ+×iso

τ Γ+ onto the commutator ideal CΓ = span{Tx(1−
TT ∗)T ∗

y : x, y ∈ Γ+} of T (Γ).

Similarly, the crossed product BΓ+ ×piso
τ Γ+ has a partial-isometric version

of universal property by [7, Proposition 5.1]: every partial-isometric repre-
sentation v of Γ+ gives a covariant partial-isometric representation (πv, v) of
(BΓ+ ,Γ+, τ) with πv(1x) = vxv

∗
x, and then BΓ+ ×piso

τ Γ+ is the universal C∗-
algebra generated by the canonical partial-isometric representation v of Γ+.
Now since x 7→ Tx and x 7→ T ∗

x are partial-isometric representations of Γ+ in
the Toeplitz algebra T (Γ), there exist (by the universality) a homomorphism
ϕT and ϕT∗ of BΓ+ ×piso

τ Γ+ onto T (Γ).

Next consider the algebra C(Γ̂) generated by {λx : x ∈ Γ} of the evaluation

maps λx(ξ) = ξ(x) on Γ̂. Let ψT and ψT∗ be the homomorphisms of T (Γ) onto

C(Γ̂) defined by ψT (Tx) = λx and ψT∗(Tx) = λ−x.

Proposition 4.1 ([7, Theorem 5.6]). Let Γ+ be the positive cone in a totally

ordered abelian group Γ. Then the following commutative diagram exists:

(4.1)

0 0 0

0 kerϕT ∩ kerϕT∗ kerϕT∗ CΓ 0

0 kerϕT BΓ+ ×piso
τ Γ+ T (Γ) 0

0 CΓ T (Γ) C(Γ̂) 0

0 0 0

ϕT |

Ψ

ϕT

ϕT∗ ψT∗

ψT

where Ψ maps each generator vx ∈ BΓ+ ×piso
τ Γ+ to δ∗x ∈ C∗(Γ) ≃ C(Γ̂).
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Proof. Apply Corollary 3.2 to the system (BΓ+ ,Γ+, τ) and the extendible ideal

BΓ+,∞. Let Qpiso := BΓ+/BΓ+,∞ ×piso
τ̃ Γ+ and Qiso := BΓ+/BΓ+,∞ ×iso

τ̃ Γ+.
Then we have:

(4.2)

0 0 0

0 kerφB
Γ+,∞

BΓ+,∞ ×piso
τ Γ+ BΓ+,∞ ×iso

τ Γ+ 0

0 kerφB
Γ+

BΓ+ ×piso
τ Γ+ BΓ+ ×iso

τ Γ+ 0

0 kerφQ Qpiso Qiso 0

0 0 0

φB
Γ+,∞

µ µB
Γ+,∞

φB
Γ+

γ γB
Γ+,∞

φQ

We claim that exact sequences in this diagram and (4.1) are equivalent. The
middle exact sequences of (4.1) and (4.2) are trivially equivalent via the isomor-
phism T : BΓ+ ×iso

τ Γ+ → T (Γ). By viewing BΓ+ as the algebra of functions
that have limit, the map f ∈ BΓ+ 7→ limx∈Γ+ f(x) induces an isomorphism
BΓ+/BΓ+,∞ → C, which intertwines the action τ̃ and the trivial action id on
C. So (BΓ+/BΓ+,∞,Γ

+, τ̃ ) ≃ (C,Γ+, id). Moreover, T combines with the iso-

morphism h : BΓ+/BΓ+,∞ ×iso
τ̃ Γ+ → C ×iso

id Γ+ → C∗(Γ) ≃ C(Γ̂) to identify

the right-hand exact sequence equivalently to 0 → CΓ → T (Γ)
ψT∗
→ C(Γ̂) → 0.

For the bottom sequence, we consider the pair of

ιC : z ∈ C 7→ z1T (Γ) and ιΓ+ : x ∈ Γ+ 7→ T ∗
x ∈ T (Γ).

It is a partial-isometric covariant representation, such that (T (Γ), ιC, ιΓ+) is a
partial-isometric crossed product of (C,Γ+, id). So we have an isomorphism

Υ : Qpiso → C×piso
id Γ+ ι

→ T (Γ) in which Υ(iΓ+(x)) = T ∗
x for all x,

and moreover if (jQ, u) denotes the canonical covariant partial-isometric rep-
resentation of the system (Q := BΓ+/BΓ+,∞,Γ

+, τ̃) in Qpiso, then Υ satisfies
the equations Υ(ux) = T ∗

x and Υ(jQ(1x +BΓ+,∞)) = ιC(limy 1x(y)) = 1 for all
x ∈ Γ+. To see Υ(kerφQ) = CΓ, recall from [4, Proposition 2.3] that

kerφQ := span{u∗xjQ(a)(1 − u∗zuz)uy : a ∈ Q, x, y, z ∈ Γ+}.

Since Υ(u∗xjQ(a)(1 − u∗zuz)uy) is a scalar multiplication of Tx(1 − TzT
∗
z )T

∗
y ,

therefore Υ(kerφQ) = CΓ. Consequently the two exact sequences are equiva-
lent:

0 kerφQ Qpiso Qiso 0

0 CΓ T (Γ) C(Γ̂) 0.

✲

❄Υ

✲

❄

✲

❄Υ

✲
φQ

❄h

✲

✲ ✲ ✲
ψT

✲
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For the second column exact sequence, we note that the isomorphism  :
Qpiso ≃ C×piso

id Γ+ → T (Γ) satisfies  ◦ γ = ϕT∗ . This implies

BΓ+,∞ ×piso
τ Γ+ ≃ ker( ◦ γ) = kerϕT∗ ,

and therefore the second column sequence of diagram (4.1) is equivalent to
0 → kerϕT∗ → BΓ+ ×piso

τ Γ+ → T (Γ) → 0.
Next we are working for the first row. The homomorphism φB

Γ+
in the

following diagram

BΓ+ ×piso
τ Γ+ BΓ+ ×iso

τ Γ+

T (Γ),

❍
❍
❍
❍❍❥

ϕT

✲
φB

Γ+

❄

T

restricts to the homomorphism φB
Γ+,∞

of the ideal BΓ+,∞ ×piso
τ Γ+ ≃ kerϕT∗

onto BΓ+,∞ ×iso
τ Γ+ ≃ CΓ. So the homomorphism ϕT | : kerϕT∗ → CΓ has

kernel I := kerϕT∗ ∩ kerϕT , and therefore first row exact sequence of the two
diagrams are indeed equivalent.

Finally we show that such Ψ exists. Consider C(Γ̂) ≃ C∗(Γ) ≃ C ×id Γ is
the C∗-algebra generated by the unitary representation x ∈ Γ 7→ δx ∈ C×id Γ.
Then we have a homomorphism πδ∗ × δ∗ : BΓ+ ×piso

τ Γ+ → C ×id Γ which
satisfies πδ∗ × δ∗(vx) = δ∗x for all x ∈ Γ+, and hence it is surjective. By looking
at the spanning elements of kerϕT and kerϕT∗ we can see that these two ideals
are contained in ker(πδ∗ × δ∗), therefore J := kerϕT + kerϕT∗ must be also
in ker(πδ∗ × δ∗). For the other inclusion, let ρ be a unital representation of
BΓ+ ×piso

τ Γ+ on a Hilbert space Hρ with ker ρ = J . Then for s ∈ Γ+ we have
ρ((1− vsv

∗
s )− (1− v∗svs)) = 0 because 1− vsv

∗
s ∈ kerϕT∗ and 1− v∗svs ∈ kerϕT

belong to J . So 0 = ρ(v∗svs − vsv
∗
s ), which implies that ρ(v∗svs) = ρ(vsv

∗
s ). On

the other hand the equation ρ((1 − vsv
∗
s ) + (1 − v∗svs)) = 0 gives ρ(vsv

∗
s ) = I.

Therefore ρ(vsv
∗
s ) = ρ(v∗svs) = I, and this means ρ(vs) is unitary for every

s ∈ Γ+. Consequently a representation ρ̃ : C ×id Γ → B(Hρ) exists, and it
satisfies ρ̃◦ (πδ∗ × δ

∗) = ρ. Thus kerπδ∗ × δ
∗ ⊂ ker ρ = J , and the composition

πδ∗×δ
∗ with the Fourier transform C∗(Γ) ≃ C(Γ̂) is the wanted homomorphism

Ψ. �

5. The primitive ideals of c ×
piso
τ

N

Suppose Γ+ is now the additive semigroupN. The algebraBN is conveniently
viewed as the C∗-algebra c of convergent sequences, the ideal BN,∞ with c0, and
the action τ of N on c is generated by the unilateral shift: τ1(x0, x1, x2, . . .) =
(0, x0, x1, x2, . . .). The universal C∗-algebra c ×piso

τ N is generated by a power
partial isometry v := iN(1). The Toeplitz algebra T (Z) is the C∗-subalgebra
of B(ℓ2(N)) generated by isometries {Tn : n ∈ N}, where Tn(ei) = en+i on the
set of usual orthonormal basis {ei : i ∈ N∪ {0}} of ℓ2(N), and the commutator
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ideal of T (Z) is K(ℓ2(N)). Kernels of ϕT and ϕT∗ are identified in [7, Lemma
6.2] by

kerϕT = span{gmi,j : i, j,m ∈ N}; kerϕT∗ = span{fmi,j : i, j,m ∈ N},

where

gmi,j = v∗i vmv
∗
m(1− v∗v)vj and fmi,j = viv

∗
mvm(1− vv∗)v∗j .

Moreover I := kerϕT ∩kerϕT∗ is an essential ideal in c×piso
τ N [7, Lemma 6.8],

given by

span{fmi,j − fm+1
i,j = gmm−i,m−j − gm+1

m−i,m−j : m ∈ N, 0 ≤ i, j ≤ m}.

The main point of [7, §6] is to show that there exist isomorphisms of kerϕT
and kerϕT∗ onto the algebra

A := {f : N→ K(ℓ2(N)) : f(n) ∈ PnK(ℓ2(N))Pn and ε∞(f)=lim
n
f(n) exists},

where Pn := 1−Tn+1T
∗
n+1 is the projection of ℓ2(N) onto the subspace spanned

by {ei : i = 0, 1, 2, . . . , n}, and such that they restrict to isomorphisms of I
onto the ideal

A0 := {f ∈ A : lim
n
f(n) = 0} of A.

We shall show in Proposition 5.1 that A and A0 are related to the alge-
bras of compact operators on the Hilbert c-module ℓ2(N, c) and on the closed
sub-c-module ℓ2(N, c0). We supply our readers with some basic theory of the
C∗-algebra of operators on this Hilbert module, and let us begin with recall-
ing the module structure of ℓ2(N, c) (and its closed sub-module). The vector
space ℓ2(N, c), containing all c-valued functions a : N→ c such that the series
∑

n∈N
a(n)∗a(n) converges in the norm of c, forms a Hilbert c-module with the

module structure defined by (a ·x)(n) = a(n)x for x ∈ c, and its c-valued inner
product given by 〈a, b〉 =

∑

n∈N
a(n)∗b(n). In fact the module ℓ2(N, c) is natu-

rally isomorphic to the Hilbert module ℓ2(N)⊗c that arises from the completion
of algebraic (vector space) tensor product ℓ2(N)⊙ c associated to the c-valued
inner product defined on simple tensor product by 〈ξ ⊗ x, η ⊗ y〉 = 〈ξ, η〉x∗y
for ξ, η ∈ ℓ2(N) and x, y ∈ c. The isomorphism is implemented by the map φ
that takes (ei ⊗ x) ∈ ℓ2(N)⊗ c to the element φ(ei ⊗ x) ∈ ℓ2(N, c) which is the

function [φ(ei ⊗ x)](n) =

{

x if i = n
0 otherwise.

By exactly the same arguments,

we see that the two Hilbert c0-modules ℓ2(N, c0) and ℓ2(N) ⊗ c0 are isomor-
phic. However since c0 is an ideal of c, it follows that the c0-module ℓ2(N, c0)
is a closed sub-c-module of ℓ2(N, c), and respectively ℓ2(N) ⊗ c0 is a closed
sub-c-module of ℓ2(N)⊗ c. Moreover the c-module isomorphism φ restricts to
c0-module isomorphism ℓ2(N, c0) ≃ ℓ2(N)⊗ c0.

Next, we consider the C∗-algebra L(ℓ2(N, c)) of adjointable operators on
ℓ2(N, c), and the ideal K(ℓ2(N, c)) of L(ℓ2(N, c)) spanned by the set {θa,b :
a, b ∈ ℓ2(N, c)} of compact operators on the module ℓ2(N, c). The algebra
K(ℓ2(N, c0)) is defined by the same arguments, and note that K(ℓ2(N, c0)) is
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an ideal of K(ℓ2(N, c)). The isomorphism of two modules ℓ2(N, c) and ℓ2(N)⊗c,
implies that K(ℓ2(N, c)) ≃ K(ℓ2(N)⊗c), which by the Hilbert module theorem,
this is the C∗-algebraic tensor product K(ℓ2(N)) ⊗ c of K(ℓ2(N)) and c. We
shall often use the characteristic functions {1n : n ∈ N} as generator elements
of c and the spanning set {θei⊗1n,ej⊗1n : i, j, n ∈ N} of K(ℓ2(N, c)) in our
computations.

There is another ingredient that we need to consider to state the Proposition.
Suppose S ∈ L(ℓ2(N, c)) is an operator defined by S(a)(i) = a(i− 1) for i ≥ 1
and zero otherwise. One can see that S∗S = 1, i.e., S is an isometry. Let p ∈
L(ℓ2(N, c)) be the projection (p(a))(n) = 1na(n) for a ∈ ℓ2(N, c), and similarly
q ∈ L(ℓ2(N, c0)) be the projection (q(a))(n) = 1na(n) for a ∈ ℓ2(N, c0). Then
the following two partial isometric representations of N in pL(ℓ2(N, c))p defined
by

w : n ∈ N 7→ pS∗
np and t : n ∈ N 7→ pSnp,

induce the representations πw×w and πt× t of c×
piso
τ N in pL(ℓ2(N, c))p which

satisfy πw × w(vi) = pS∗
i p and πt × t(vi) = pSip for all i ∈ N. These πw × w

and πt × t are faithful representations [4, Example 4.3].

Proposition 5.1. The representations πw × w and πt × t map kerϕT and

kerϕT∗ isomorphically onto the full corner pK(ℓ2(N, c))p. Moreover, they

restrict to isomorphisms of the ideal kerϕT ∩ kerϕT∗ onto the full corner

qK(ℓ2(N, c0))q.

Remark 5.2. It follows from this proposition that PrimkerϕT and PrimkerϕT∗

are both homeomorphic to Prim c. In fact, since kerϕT∗ ≃ c0 ×
piso
τ N by [2,

Corollary 3.1], we can therefore deduce that c0 ×
piso
τ N is Morita equivalent to

K(ℓ2(N, c)). This is a useful fact for our subsequential work on the partial-
isometric crossed product of lattice semigroup N× N.

Proof of Proposition 5.1. We only have to show that

πt × t(kerϕT∗) = pK(ℓ2(N, c))p and

πt × t(kerϕT ∩ kerϕT∗) = qK(ℓ2(N, c0))q.

The rest of arguments is done in [4, Example 4.3].
Note that the algebra pK(ℓ2(N, c))p is spanned by {pθcei⊗1n,ej⊗1np : i, j, n ∈

N}. Since πt × t(fni,j) = pθcei⊗1n,ej⊗1np for every i, j, n ∈ N, therefore πt ×

t(kerϕT∗) = pK(ℓ2(N, c))p.
Similarly we consider that {qθc0ei⊗1{n},ej⊗1{n}

q : i, j ≤ n ∈ N} spans qK(ℓ2(N,

c0))q. We use the equation θcei⊗1n,ej⊗10 = θcei⊗1n,ej⊗1n for every n ∈ N, in the
computations below, to see that

πt × t(fni,j − fn+1
i,j ) = p(θcei⊗1n,ej⊗10 − θcei⊗1n+1,ej⊗10)p

= p(θc(ei⊗1n)−(ei⊗1n+1),(ej⊗10)
)p

= p(θcei⊗1{n},ej⊗10)p
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= p(θcei⊗1{n},ej⊗1{n}
)p.

To convince that every p(θcei⊗1{n},ej⊗1{n}
)p belongs to qK(ℓ2(N, c0))q, we need

the embedding ιK of qK(ℓ2(N, c0))q in pK(ℓ2(N, c))p stated in Lemma 5.3.
In fact, every element p(θcei⊗1{n},ej⊗1{n}

)p spans ιK(qK(ℓ2(N, c0))q), therefore

πt × t(kerϕT∗ ∩ kerϕT ) = ιK(qK(ℓ2(N, c0))q). �

Lemma 5.3. Let p ∈ L(ℓ2(N, c)) and q ∈ L(ℓ2(N, c0)) are the projections

defined by (p(a))(n) = 1na(n) for a ∈ ℓ2(N, c), and (q(a))(n) = 1na(n) for a ∈
ℓ2(N, c0). Then the full corner qK(ℓ2(N, c0))q embeds naturally via ιK(qθc0

a,bq) =

pθc
a,bp as an ideal in pK(ℓ2(N, c))p, and there exists a short exact sequence

0 −→ qK(ℓ2(N, c0))q
ιK
−→ pK(ℓ2(N, c))p

qK

−→ K(ℓ2(N)) −→ 0,

where qK(pθc
a,bp) = θx,y with x, y ∈ ℓ2(N) are given by xi = limn→∞(1ia(i))(n)

and yi = limn→∞(1ib(i))(n). In particular we have

qK(pθcei⊗1n,ej⊗1mp) = qK(θcp(ei⊗1n),p(ej⊗1m))

= qK(θcei⊗1n∨i,ej⊗1m∨j
)

= Ti(1− TT ∗)T ∗
j ∈ K(ℓ2(N)).

Proof. Apply [5, Lemma 2.6] for the module X := ℓ2(N, c) and I = c0. In this
case we have the submodule XI = ℓ2(N, c0). Note that if a ∈ ℓ2(N, c), then
every sequence a(i) ∈ c is convergent in C, and the map q : a 7→ (q(a))(i) =

limn→∞(a(i))(n) gives 0 → ℓ2(N, c0) → ℓ2(N, c)
q
→ ℓ2(N) → 0. Moreover

[5, Lemma 2.6] proves that ιK(θXIa,b ) = θXa,b and qK(θXa,b) = θ
X/XI
q(a),q(b) give the

exactness of the sequence

0 −→ K(ℓ2(N, c0))
ιK
−→ K(ℓ2(N, c))

qK

−→ K(ℓ2(N)) −→ 0.

Since ιK(qθXIa,b q) = θXq(a),q(b) = pθXa,bp for every a and b in ℓ2(N, c0), the cor-

ner qK(ℓ2(N, c0))q is embedded into pK(ℓ2(N, c))p such that qK is defined by
qK(pθXa,bp) = qK(θXp(a),p(b)) = θx,y where xi = limn→∞(1ia(i))(n) and yi =

limn→∞(1ib(i))(n). Thus we obtain the required exact sequence. �

Proposition 5.4. There are isomorphisms Θ : pK(ℓ2(N, c))p → kerϕT and

Θ∗ : pK(ℓ2(N, c))p → kerϕT∗ defined by Θ(pθcei⊗1n,ej⊗1np) = gni,j and
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Θ∗(pθ
c
ei⊗1n,ej⊗1np) = fni,j for all i, j, n ∈ N such that the following commu-

tative diagram has all rows and columns exact:

(5.1)

0 0 0

0 qK(ℓ2(N, c0))q pK(ℓ2(N, c))p K(ℓ2(N)) 0

0 pK(ℓ2(N, c))p c×piso
τ N T (Z) 0

0 K(ℓ2(N)) T (Z) C(T) 0

0 0 0

ιK

ιK ◦ α

qK

Θ∗

Θ

qK
Ψ

ϕT

ϕT∗ ψT∗

ψT

Proof. We apply Proposition 4.1 to the system (c,N, τ). Let {vi : i ∈ N}
denote the generators of c ×piso

τ N, and {δi : i ∈ Z} the generator of C∗(Z).
Then the homomorphism Ψ : c×piso

τ N→ C(T) given by Proposition 4.1 satisfies
Ψ(vi) = δ∗i = (z 7→ zi) ∈ C(T) for every i ∈ N. Moreover Θ = (πw × w)−1

and Θ∗ = (πt × t)−1, by Proposition 5.1, satisfy Θ(pθcei⊗1n,ej⊗1np) = gni,j and

Θ∗(pθ
c
ei⊗1n,ej⊗1np) = fni,j for all i, j, n ∈ N. So the first row sequence is exact,

and which is equivalent to the one of (4.1) for Γ+ = N because

0 I kerϕT∗ K(ℓ2(N)) 0

0 qK(ℓ2(N, c0))q pK(ℓ2(N, c))p K(ℓ2(N)) 0.

✲

❄

πt×t

✲id

❄

✲

❄

πt×t

✲
ϕT |

❄
id

✲

✲ ✲ι
K

✲
qK

✲

For the first column we use the automorphism α of qK(ℓ2(N, c0))q defined on
its spanning element by α(qθc0ei⊗1{n},ej⊗1{n}

q) = qθc0en−i⊗1{n},en−j⊗1{n}
q. Then

by inspections on the spanning elements of the algebras involved, we can see
that the diagram (5.1) commutes. �

Thus we know from the diagram that the set Prim c×piso
τ N is given by the

sets PrimK(ℓ2(N, c)) and PrimT (Z). Since

PrimT (Z) = PrimK(ℓ2(N)) ∪ PrimC(T) = {0} ∪ T,

and PrimK(ℓ2(N, c)) is homeomorphic to

Prim c = Prim c0 ∪ PrimC ≃ N ∪ {∞},

therefore Prim c ×piso
τ N consists of a copy of {In} of N embedded as an open

subset, a copy of {Jz} of T embedded as a closed subset. We identify these
ideals in Proposition 5.7 and Lemma 5.12.
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Note for now that kerϕT and kerϕT∗ are primitive ideals of c ×piso
τ N: the

Toeplitz representation T of T (Z) on ℓ2(N) is irreducible by [8, Theorem 3.13],
and ϕT and ϕT∗ are surjective homomorphisms of c×piso

τ N onto T (Z), so T ◦ϕT
and T ◦ϕT∗ are irreducible representations of c×piso

τ N on ℓ2(N). Moreover, irre-

ducibility of the representation id ◦qK : pK(ℓ2(N, c))p
qK

→ K(ℓ2(N))
id
→ B(ℓ2(N))

implies the kernel I = kerϕT ∩ kerϕT∗ ≃ qK(ℓ2(N, c0))q of id ◦qK is a prim-
itive ideal of pK(ℓ2(N, c))p ≃ kerϕT . Similarly, I is a primitive ideal of
kerϕT∗ ≃ pK(ℓ2(N, c))p. Although I 6∈ Prim c ×piso

τ N, the ideal I is es-
sential in c×piso

τ N by [7, Lemma 6.8], so the space PrimI ≃ Prim c0 is dense
in Prim c×piso

τ N.
Next consider that K(ℓ2(N)) = span{eij := Ti(1 − TT ∗)T ∗

j : i, j ∈ N}, and

recall that there is a natural isomorphism Λ of K(ℓ2(N, c)) ≃ K(ℓ2(N))⊗c onto
the algebra

C(N ∪ {∞},K(ℓ2(N))) := {f : N→ K(ℓ2(N)) : lim
n
f(n) exists in K(ℓ2(N))}

given by Λ(eij⊗1k)(n) = 1k(n)eij for i, j, k, n ∈ N. Then Λ(pK(ℓ2(N, c))p) ⊂ A
because

[Λ(p(eij ⊗ 1m)p)](n) = [Λ(eij ⊗ 1m∨i∨j)](n)

=

{

eij if n ≥ m ∨ i ∨ j
0 otherwise

= πn(f
m
i,j) = π∗

n(g
m
i,j).

Since Λ = π◦Θ∗ = π∗◦Θ, Λ maps the corners pK(ℓ2(N, c))p and qK(ℓ2(N, c0))q
isomorphically onto the algebra A and A0 respectively. Construction of this
isomorphism in [7, §6] involves the representations πn and π∗

n, for each n ∈ N,
of c×piso

τ N on ℓ2(N) that are associated to the partial-isometric representations
k 7→ PnTkPn and k 7→ PnT

∗
kPn respectively, where Pn := 1 − Tn+1T

∗
n+1 is the

projection onto Hn := span{ei : i = 0, 1, 2, . . . , n}. For every a ∈ kerϕT∗ ,
the sequence {πn(a)}n∈N is convergent in K(ℓ2(N)), and then the map a ∈
kerϕT∗ 7→ π(a) := {πn(a)}n∈N ∈ A defines the isomorphism.

These observations suggest that an extension of π should give a repre-
sentation of c ×piso

τ N in the algebra Cb(N, B(ℓ2(N))), and then primitive
ideals are the kernels of evaluation maps. But we can consider a smaller
algebra which gives more information on the image of π. Note that the al-
gebra C(N ∪ {∞}, B(ℓ2(N))) is too small to consider, because the sequence
(PnTkPn)n∈N as we see, does not converge to Tk in the operator norm on
B(ℓ2(N)), but it converges strongly to Tk. Therefore we consider the set
Cb(N ∪ {∞}, B(ℓ2(N))∗−s) of functions ξ : N → B(ℓ2(N)) such that limn ξn
exists in the *-strong topology on B(ℓ2(N)), and which satisfies ‖ξ‖∞ :=
supn ‖ξn‖ < ∞. By [9, Lemma 2.56], it is a C∗-algebra with the pointwise
operation from B(ℓ2(N)) and the norm ‖ · ‖∞. Then let

B := {f :N→ B(ℓ2(N)) : sup
n∈N

‖f(n)‖B(ℓ2(N)) <∞, f(n) ∈ PnB(ℓ2(N))Pn and
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lim
n→∞

f(n) exists in the ∗-strong topology on B(ℓ2(N))}.

Note that B is a subalgebra of Cb(N∪{∞}, B(ℓ2(N))∗−s) because PnB(ℓ2(N))Pn
≃ B(Hn) is closed in B(ℓ2(N)) for every n ∈ N, and B has an identity 1B
= (P0, P1, P2, . . .).

Proposition 5.5. There are faithful representations π and π∗ of c ×piso
τ N in

the algebra B, which defined on each generator vk ∈ c×piso
τ N by

π(vk)(n) := πn(vk) = PnTkPn and π∗(vk)(n) := π∗
n(vk) = PnT

∗
kPn for n ∈ N.

These representations π and π∗ are the extension of isomorphisms π : kerϕT∗

→ A and π∗ : kerϕT → A of [7, Theorem 6.1].

Proof. The map π is induced by the partial-isometric representation k 7→ Wk

where Wk(n) = PnTkPn, and similarly for π∗ by k 7→ Sk where Sk(n) =
PnT

∗
kPn for n ∈ N. These are unital representations: π(1) = π(v0) = (P0, P1,

P2, . . .) = π∗(1).
By [7, Proposition 5.4], the representation π is faithful if and only if for any

r > 0 and i < j in N, we have ξri,j ∈ B for which

ξri,j := (π(1)− π(vr)
∗π(vr))(π(vi)π(vi)

∗ − π(vj)π(vj)
∗)

is a nonzero element of B. Let r > 0 and i < j ∈ N, then we consider the three
cases 0 < r ≤ i < j, i < r < j and i < j ≤ r separately. If 0 < r ≤ i < j, then

ξri,j(i) = (Pi − πi(vr)
∗πi(vr))(πi(vi)πi(vi)

∗ − πi(vj)πi(vj)
∗)

= (Pi − PiT
∗
r PiTrPi)(PiTiPiT

∗
i Pi − PiTjPiT

∗
j Pi)

= (Pi − PiT
∗
r TrPi−rPi)(PiTiT

∗
i Pi − 0)

= (Pi − Pi−r)(PiTiT
∗
i Pi)

and that [ξri,j(i)](ei) = (Pi − Pi−r)(ei) = ei. If i < j ≤ r, then similar compu-
tations show that [ξri,j(i)](ei) = [Pi(PiTiT

∗
i Pi)](ei) = ei, and for i < r < j we

have [ξri,j(r)](er) = (Pr − P0)(er) = er. Thus ξri,j 6= 0 in B. The same outline
of arguments is valid to show the representation π∗ is also faithful. �

So we have for every n ∈ N the representations πn = εn◦π and π∗
n = εn◦π

∗ of
c×piso

τ N on Hn, where εn are the evaluation map of Cb(N∪{∞}, B(ℓ2(N))∗−s).
Hence they are irreducible, indeed every nonzero vector of the subspace Hn of
ℓ2(N) is cyclic for π∗

n: if (h0, h1, . . . , hn) ∈ Hn with hj 6= 0 for some j, then for
every i ∈ {0, 1, 2, . . . , n}, we have

(π∗
n(g

n
i,j))(h0, h1, . . . , hn) = [Ti(1− TT ∗)T ∗

j ](h0, h1, . . . , hn)

= (0, . . . , hj , . . . , 0), where hj is in the i-th slot,

so π∗
n(

1
hj
gni,j)(h) = ei, and therefore Hn = span{π∗

n(ξ)h : ξ ∈ c×piso
τ N}. Same

arguments work for πn.
Note for every n ∈ N that πn(f

m
i,j) = eij = πn(g

k
n−i,n−j) for all 0 ≤

i, j,m, k ≤ n, and similarly π∗
n(g

m
i,j) = eij = π∗

n(f
k
n−i,n−j) for all 0 ≤ i, j,m, k ≤
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n. Thus every fmi,j − gkn−i,n−j is contained in kerπn, and similarly (gmi,j −

fkn−i,n−j) ∈ kerπ∗
n. We shall see many more elements of kerπn as well as

kerπ∗
n in Proposition 5.7.

But now we recall that for n ∈ N the partial-isometric representation Jn :

N → B(Hn) in [7, §3] defined by Jnt (er) =

{

et+r if r + t ∈ {0, 1, . . . , n}
0 otherwise,

induces the representation πN

Jn ×Jn of (c×piso
τ N, v) on Hn. In fact πN

Jn ×Jn =
πn, because for every k ∈ N we have (πN

Jn×Jn(vk))(er) = Jnk (er) = PnTkPn(er)
where r ∈ {0, 1, 2, . . . , n}.

The ideal ker⊕nr=0π
N

Jr × Jr appears in the structure of c×piso
τ N [7, Lemma

5.7]. To be more precise about it, we need some results in [7, §5] related to
the system (Cn+1, τ,N). The crossed product Cn+1 ×piso

τ N is the universal
C∗-algebra generated by a canonical partial-isometric representation w of N
such that wr = 0 for r ≥ n + 1. Let qn : (c ×piso

τ N, v) → (Cn+1 ×piso
τ N, w)

be the homomorphism induced by w : N → Cn+1 ×piso
τ N, and note that it is

surjective. Then Lemma 5.7 of [7] shows that ker qn = ker(⊕nr=0π
N

Jr × Jr) =
⋂n
r=0 ker(π

N

Jr × Jr). So by these arguments we obtain the following equation

(5.2) ker qn =

n
⋂

r=0

kerπr for every n ∈ N.

Lemma 5.6. For n ∈ N, let Ln be the ideal of (c ×piso
τ N, v) generated by

{vr : r ≥ n+ 1}. Then Ln = ker qn, and it is isomorphic to

(5.3) {ξ∈π(c×piso
τ N)⊂Cb(N∪{∞}, B(ℓ2(N))∗−s) : ξ ≡ 0 on {0, 1, 2, . . . , n}}.

Proof. We have Ln ⊂ ker qn because qn(vk) = 0 for all k ≥ n + 1. To see
ker qn ⊂ Ln, let ρ be a representation of c ×piso

τ N on Hρ where ker ρ = Ln.
Since ρ(vt) = 0 for every t ≥ n+ 1, by the universal property of Cn+1 ×piso

τ N,
there exists a representation ρ̃ of Cn+1×piso

τ N on Hρ which satisfies ρ̃ ◦ qn = ρ.
Thus ker qn ⊂ ker ρ = Ln.

Next we show that π(Ln) and (5.3) are equal. Let r ≥ n+ 1, and consider
π(vr) is the sequence (PiTrPi)i∈N. If 0 ≤ i ≤ n, then 0 ≤ i+1 ≤ n+1 ≤ r and

PiTrPi = (1− Ti+1T
∗
i+1)TrPi = (1− Ti+1T

∗
i+1)Ti+1Tr−(i+1)Pi = 0.

So π(Ln) is a subset of (5.3). For the other inclusion, suppose f ∈ π(c×piso
τ N)

in which f(i) = 0 for all 0 ≤ i ≤ n. Since f = π(ξ) for some ξ ∈ c×piso
τ N, and

π(ξ)(i) = πi(ξ) = f(i) for all i ∈ N, we therefore have πi(ξ) = f(i) = 0 for all
0 ≤ i ≤ n. Thus ξ ∈ ∩ni=0 kerπi = ker qn, and hence f = π(ξ) ∈ π(Ln). �

Let π∞ := limn πn and π∗
∞ := limn π

∗
n where the limits are taken with

respect to the strong topology ofB(ℓ2(N)). Then π∞ and π∗
∞ are the irreducible

representations ϕT : vk 7→ Tk and ϕT∗ : vk 7→ T ∗
k of c×piso

τ N on H∞ := ℓ2(N).
Thus by [7, Lemma 6.2] we have

kerπ∞ = kerϕT = span{gmi,j := v∗i vmv
∗
m(1 − v∗v)vj : i, j,m ∈ N},
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kerπ∗
∞ = kerϕT∗ = span{fmi,j := viv

∗
mvm(1− vv∗)v∗j : i, j,m ∈ N}.

For n ∈ N, let πn and π∗
n be the irreducible representations of c×piso

τ N on the
subspace Hn of ℓ2(N), that are induced by the partial-isometric representations
k 7→ PnTkPn and k 7→ PnT

∗
kPn. Let Ln be the ideal of (c×piso

τ N, v) generated
by {vr : r ≥ n+ 1}. Then πn is the representation

εn ◦ π : c×piso
τ N

π
−→ B ⊂ Cb(N ∪ {∞}, B(ℓ2(N))∗−s)

εn−→ B(Hn),

and similarly π∗
n = εn ◦ π∗. So kerπn ≃ ker εn ≃ kerπ∗

n.

Proposition 5.7. Let n ∈ N. Then

(a) kerπn = kerπ∗
n ≃ ker εn = {ξ ∈ B : ξ(n) = 0};

(b) kerπ∞ ≃ kerπ∗
∞ = {ξ ∈ B : ∗-strong limn ξ(n) = 0};

Furthermore,

(c) kerπ∗
n = span{gmi,j − fkn−i,n−j + η : 0 ≤ i, j,m, k ≤ n, η ∈ Ln},

kerπn = span{fmi,j − gkn−i,n−j + η : 0 ≤ i, j,m, k ≤ n, η ∈ Ln}, and
kerπ∗

n = kerπn for n ∈ N, in particular we have kerπ0 = kerπ∗
0 = L0;

(d) kerπn|kerϕT∗ = span{(fmi,j − fki,j) + fzx,y : 0 ≤ i, j,m, k ≤ n, one of

x, y, z ≥ n+ 1},
kerπ∗

n|kerϕT
= span{(gmi,j − gki,j) + gzx,y : 0 ≤ i, j,m, k ≤ n, one of

x, y, z ≥ n+ 1},
Θ−1

∗ (kerπn|kerϕT∗ ) = Θ−1(kerπ∗
n|kerϕT

), and
kerπ∗

n|kerϕT
≃ {a ∈ A : a(n) = 0} ≃ kerπn|kerϕT∗ ;

(e) kerπ∗
n|I = span{gmi,j − gm+1

i,j : 0 ≤ i, j ≤ m in N, and m 6= n} =

kerπn|I = span{fmi,j − fm+1
i,j : 0 ≤ i, j ≤ m in N, and m 6= n} is

isomorphic to the ideal {a ∈ A0 : a(n) = 0}.

Remark 5.8. Note that the representations πn|kerϕT∗ and π∗
n|kerϕT

are equiv-
alent to the evaluation map εn : f ∈ A 7→ f(n) ∈ B(Hn) of A on Hn, so we
have kerπn|kerϕT∗ ≃ kerπ∗

n|kerϕT
is isomorphic to {f ∈ A : f(n) = 0}, and

kerπn|I = kerπ∗
n|I ≃ {f ∈ A0 : f(n) = 0}; and kerπ∞ ≃ kerπ∗

∞ ≃ A.

Proof of Proposition 5.7. Fix n ∈ N. We show for kerπn, and skip the proof
for kerπ∗

n because it contains the same arguments. We clarify firstly that the
space

J := span{fmi,j − gkn−i,n−j + η : 0 ≤ i, j,m, k ≤ n, η ∈ Ln}

is an ideal of (c×τ N, v) by showing vJ ⊂ J and v∗J ⊂ J . Let i = n, then

vvkv
∗
k(1− v∗v)vn−j = v(v∗vvkv

∗
k)(1− v∗v)vn−j

= vvkv
∗
kv

∗v(1 − v∗v)vn−j

= vk+1v
∗
k+1(v − vv∗v)vn−j = 0,

therefore v(fmn,j−g
k
0,n−j+η) = vvnv

∗
mvm(1−vv∗)v∗j −vvkv

∗
k(1−v

∗v)vn−j+vη =
fmn+1,j+vη belongs to J because fmn+1,j ∈ Ln. If 0 ≤ i ≤ n−1, then 1 ≤ i+1 ≤ n
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and n− i ≥ 1, and we have

vv∗n−ivkv
∗
k = vv∗v∗n−i−1vn−i−1v

∗
n−i−1vkv

∗
k

= v∗n−i−1vn−i−1vv
∗v∗n−i−1vkv

∗
k

= v∗n−i−1vn−iv
∗
n−ivkv

∗
k

= v∗n−i−1vmax{n−i,k}v
∗
max{n−i,k},

so v(fmi,j − gkn−i,n−j + η) = fmi+1,j − g
max{n−i,k}
n−(i+1),n−j + vη ∈ J .

Now we check for v∗J , and assume i = 0, then

v∗[fm0,j − gkn,n−j + η] = v∗[v∗mvm(1− vv∗)v∗j − v∗nvkv
∗
k(1− v∗v)vn−j + η]

= 0− gkn+1,n−j + v∗η ∈ J

because gkn+1,n−j ∈ Ln. It follows by similar computations for 1 ≤ i ≤ n that

v∗[fmi,j − gkn−i,n−j + η] = f
max{i,m}
i−1,j − gkn−(i−1),n−j + v∗η ∈ J .

Next we show that J = kerπn, one inclusion J ⊂ kerπn is clear because
πn(f

m
i,j) = πn(g

k
n−i,n−j) = Ti(1 − TT ∗)T ∗

j and Ln ⊂ kerπn. For the other

inclusion, let σ : c ×piso
τ N → B(Hσ) be a nondegenerate representation with

kerσ = J . Note that B(Hn) = span{eij := Ti(1 − TT ∗)T ∗
j : 0 ≤ i, j ≤ n}.

Since {fni,j : 0 ≤ i, j ≤ n} is a matrix-units for B(Hσ), there is a homomorphism
ψ of B(Hn) into B(Hσ) which satisfies eij 7→ σ(fni,j). Therefore σ = ψ ◦ πn,
and hence kerπn ⊂ kerσ = J .

Using the spanning elements of kerπn and kerπ∗
n, and the equation fmi,j −

gkn−i,n−j = −(gkn−i,n−j−f
m
n−(n−i),n−(n−j)), we see that they contain each other,

therefore kerπn = kerπ∗
n for every n ∈ N. The ideal L0 is kerπ0 = kerπ∗

0

because f0
0,0 − g00,0 = v∗v − vv∗ ∈ L0.

For (d), let now J be span{(fmi,j − fki,j) + fzx,y : 0 ≤ i, j,m, k ≤ n, one of
x, y, z ≥ n + 1}. Then the same idea of calculations shows that J is an ideal
of kerϕT∗ , and it is contained in kerπn|kerϕT∗ , then for the other inclusion
let σ be a nondegenerate representation of kerϕT∗ such that kerσ = J , get
the homomorphism ψ : B(Hn) → B(Hσ) defined by ψ(eij) = σ(fni,j), and

hence the equation ψ ◦ πn = σ implies that kerπn|kerϕT∗ = J . By computa-
tions on the spanning elements we see that the equation Θ−1

∗ (kerπn|kerϕT∗ ) =
Θ−1(kerπ∗

n|kerϕT
) is hold. The same arguments work for the proof of (e), and

we skip this. �

Remark 5.9. The map n ∈ N ∪ {∞} 7→ In := kerπ∗
n ∈ Prim(c ×piso

τ N) pa-
rameterizes the open subset {P ∈ Prim(c ×piso

τ N) : kerϕT ≃ A 6⊂ P} of
Prim(c ×piso

τ N) homeomorphic to PrimA. Note that the ∞ corresponds to
the ideal kerπ∗

∞ = kerϕT∗ ∈ Prim(c ×piso
τ N), and it corresponds to I =

kerϕT∗ |kerϕT
∈ PrimA.

Lemma 5.10. (i)
⋂m
n=0 In = Lm for every m ∈ N;

(ii)
⋂

n∈N
In = {0};
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(iii) {0}  (
⋂

n>m In) ⊂ kerπ∗
∞ ∩ kerπ∞ for every m ∈ N.

Proof. Part (i) follows from (5.2) and Lemma 5.6. For (ii), note that q∞ is
the identity map on c ×piso

τ N, and that ⊕i∈Nπi = (⊕i∈N(π
N

Ji × J i)) ◦ id. So
⋂

n∈N
In = {0} by faithfulness of ⊕i∈N(π

N

Ji × J i) [7, Corollary 5.5].
The inclusion

⋂

n>m In ⊂ kerπ∗
∞ for every m ∈ N follows from the next

arguments:
⋂

n>m

ker(π∗
n|kerπ∞) ≃ {f ∈ A : f(n) = 0 ∀ n > m}

⊂ {f ∈ A : lim
n→∞

f(n) = 0}

= A0 ≃ kerπ∗
∞|kerπ∞ ⊂ kerπ∗

∞ ∈ Prim c×piso
τ N,

so the two ideals J :=
⋂

n>m In and L := kerπ∞ of c ×piso
τ N satisfy J ∩ L ⊂

kerπ∗
∞, therefore either J ⊂ kerπ∗

∞ or L ⊂ kerπ∗
∞, but the latter is not

possible. To show J ⊂ kerπ∞, since kerπn = kerπ∗
n for each n, we act similarly

using the fact that
⋂

n>m

ker(πn|kerπ∗
∞
) ≃ {f ∈ A : f(n) = 0 ∀ n > m} ⊂ kerπ∞ ∈ Prim c×piso

τ N.

Therefore, J ⊂ kerπ∗
∞ ∩ kerπ∞. Moreover, since g00,0 − g10,0 6= 0 which

satisfies π∗
n(g

0
0,0 − g10,0) = 0 for all n ≥ 1, it follows that {0}  (

⋂

n>m In). �

Remark 5.11. Part (ii) of Lemma 5.10 confirms with the fact that I is an
essential ideal of c×piso

τ N [7, Lemma 6.8].

Next consider for z ∈ T, the character γz ∈ Ẑ ≃ T defined by γz : m 7→ zm.
Note that the map γz : k ∈ N 7→ γz(k) is a partial-isometric representation of N
in C ≃ B(C). Consequently for each z ∈ T, we have a representation πγz × γz
of c ×piso

τ N on C such that πγz × γz(vk) = γz(k) = zk for k ∈ N, and it is
irreducible. Moreover we know that the homomorphism Ψ : c ×piso

τ N→ C(T)
is the composition of the Fourier transform C ×id Z ≃ C∗(Z) ≃ C(T) with
ℓ× δ∗ : c ×piso

τ N→ C×id Z, in which ℓ : (xn) ∈ c 7→ limn xn ∈ C and δ is the
unitary representation of Z on C×id Z.

Lemma 5.12. For z ∈ T, the character γz : k 7→ zk in Ẑ ≃ T gives an

irreducible representation πγz × γz of c ×piso
τ N on C such that πγz × γz =

εz ◦ (ℓ × δ∗). Denote by Jz the primitive ideal kerπγz × γz of c×piso
τ N. Then

kerπ∞ and kerπ∗
∞ are contained in Jz for every z ∈ T. Moreover every ideal

In for n ∈ N is not contained in any Jz.

Proof. By using the Fourier transform we can view C×id Z ≃ C∗(Z) as C(T),

and it follows that vk ∈ c×piso
τ N is mapped into the function ιk : t 7→ t

k
∈ C(T).

We know that primitive ideals of C(T) are given by the kernels of evaluation
maps εt(f) = f(t) for t ∈ T, and the character γz is a partial-isometric repre-
sentation of N in C for z ∈ T. Then by inspection on the generators, we see
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that the representation πγz×γz of c×
piso
τ N on C satisfies πγz×γz = εz◦(ℓ×δ

∗).
So the primitive ideal Jz := kerπγz × γz of c×piso

τ N is lifted from the quotient
(c×piso

τ N)/J ≃ C(T).
Since πγz × γz(f

m
i,j) = 0 = πγz × γz(g

m
i,j), kerπ∞ = kerϕT and kerπ∗

∞ =
kerϕT∗ are contained in Jz for every z ∈ T. Finally, since πγz × γz(vn+1) =
zn+1 6= 0 for n ∈ N, In 6⊂ Jz for any z ∈ T. �

Theorem 5.13. The maps n ∈ N∪{∞}∪{∞∗} 7→ In and z ∈ T 7→ Jz combine

to give a bijection of the disjoint union N∪{∞}∪{∞∗}∪T onto Prim(c×piso
τ N),

where I∞∗ := kerϕT . Then the hull-kernel closure of a nonempty subset F of

N ∪ {∞} ∪ {∞∗} ∪ T

is given by

(a) the usual closure of F in T if F ⊂ T;
(b) F if F is a finite subset of N;
(c) F ∪ T if F ⊂ ({∞} ∪ {∞∗});
(d) F ∪ ({∞} ∪ {∞∗} ∪ T) if F 6= N is an infinite subset of N;
(e) N ∪ {∞} ∪ {∞∗} ∪ T if N ⊆ F .

Proof. The diagram 5.1 together with Proposition 5.7 gives a bijection map of
N ∪ {∞} ∪ {∞∗} ∪ T onto Prim(c×piso

τ N).
Lemma 5.10(ii) gives the closure of the subset F in (e), and Lemma 5.10(iii)

gives the closure of the subset F in (d). If F ⊂ ({∞}∪{∞∗}), then F = F ∪T
because kerπ∗

∞, kerπ∞ ⊂ Jz for every z ∈ T by Lemma 5.12.
To see that F = F for a finite subset F = {n1, n2, . . . , nj} of N, we note

that if an ideal P ∈ Prim(c×τ N) satisfies
⋂j
i=1 Ini

⊂ P , then

• P 6= Jz for any z ∈ T because vnj+1 ∈
⋂j
i=1 Ini

but vnj+1 6∈ Jz;

• P 6= I∞, I∞∗ because vnj+1 ∈
⋂j
i=1 Ini

but vnj+1 6∈ I∞, I∞∗ ;

• P 6= In for n 6∈ F because (gn0,0− g
n+1
0,0 ) ∈

⋂j
i=1 Ini

but (gn0,0− g
n+1
0,0 ) 6∈

In for n 6∈ F .

So it can only be P = Ij for some j ∈ F . Finally the usual closure of F in T is
followed by the fact that the map z 7→ Jz is a homeomorphism of T onto the
closed set PrimC(T). �
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