THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

SRIWULAN ADJI AND SAEID ZAHMATKESH

ABSTRACT. Let Γ^+ be the positive cone in a totally ordered abelian group Γ , and α an action of Γ^+ by extendible endomorphisms of a C^* -algebra A. Suppose I is an extendible α -invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I} := I \times_{\alpha}^{\operatorname{piso}} \Gamma^+$ embeds naturally as an ideal of $A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal \mathcal{I} together with the kernel of a natural homomorphism $\phi: A \times_{\alpha}^{\operatorname{piso}} \Gamma^+ \to A \times_{\alpha}^{\operatorname{iso}} \Gamma^+$ gives a composition series of ideals of $A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$ studied by Lindiarni and Raeburn.

1. Introduction

Let (A, Γ^+, α) be a dynamical system consisting of the positive cone Γ^+ in a totally ordered abelian group Γ , and an action $\alpha: \Gamma^+ \to \operatorname{End} A$ of Γ^+ by extendible endomorphisms of a C^* -algebra A. A covariant representation of the system (A, Γ^+, α) is defined for which the semigroup of endomorphisms $\{\alpha_s: s \in \Gamma^+\}$ are implemented by partial isometries, and then the associated partial-isometric crossed product C^* -algebra $A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$, generated by a universal covariant representation, is characterized by the property that its nondegenerate representations are in a bijective correspondence with covariant representations of the system. This generalizes the covariant isometric representation theory: the theory that uses isometries to represent the semigroup of endomorphisms in a covariant representation of the system. We denoted by $A \times_{\alpha}^{\operatorname{iso}} \Gamma^+$ for the corresponding isometric crossed product.

Suppose I is an extendible α -invariant ideal of A, then $a+I\mapsto \alpha_x(a)+I$ defines an action of Γ^+ by extendible endomorphisms of the quotient algebra A/I. It is well-known that the isometric crossed product $I\times_{\alpha}^{\mathrm{iso}}\Gamma^+$ sits naturally

Received October 7, 2014; Revised March 6, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 46L55.$

 $Key\ words\ and\ phrases.\ C^*$ -algebra, endomorphism, semigroup, partial isometry, crossed product, primitive ideal, hull-kernel closure.

as an ideal in $A \times_{\alpha}^{\mathrm{iso}} \Gamma^+$ such that $(A \times_{\alpha}^{\mathrm{iso}} \Gamma^+)/(I \times_{\alpha}^{\mathrm{iso}} \Gamma^+) \simeq A/I \times_{\alpha}^{\mathrm{iso}} \Gamma^+$. We show that this result is valid for the partial-isometric crossed product.

Moreover if $\phi: A \times_{\alpha}^{\operatorname{piso}} \Gamma^+ \to A \times_{\alpha}^{\operatorname{iso}} \Gamma^+$ is the natural homomorphism given by the canonical universal covariant isometric representation of (A, Γ^+, α) in $A \times_{\alpha}^{\operatorname{iso}} \Gamma^+$, then $\ker \phi$ together with the ideal $I \times_{\alpha}^{\operatorname{piso}} \Gamma^+$ give a composition series of ideals of $A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$, from which we recover the structure theorems of [7]. Let us now consider the framework of [7]. A system that consists of the C^* -subalgebra $A := B_{\Gamma^+}$ of $\ell^{\infty}(\Gamma^+)$ spanned by the functions 1_s satisfying

$$1_s(t) = \begin{cases} 1 & \text{if } t \ge s \\ 0 & \text{otherwise,} \end{cases}$$

and the action $\tau: \Gamma^+ \to \operatorname{End} B_{\Gamma^+}$ given by the translation on $\ell^\infty(\Gamma^+)$. We choose an extendible τ -invariant ideal I to be the subalgebra $B_{\Gamma^+,\infty}$ spanned by $\{1_x - 1_y : x < y \in \Gamma^+\}$. Then the composition series of ideals of $B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$, that is given by the two ideals $\ker \phi$ and $B_{\Gamma^+,\infty} \times_{\tau}^{\operatorname{piso}} \Gamma^+$, produces the large commutative diagram in [7, Theorem 5.6]. This result shows that the commutative diagram in [7, Theorem 5.6] exists for any totally ordered abelian subgroup (not only for subgroups of \mathbb{R}), and that we understand clearly where the diagram comes from.

Next, if we consider a specific semigroup Γ^+ such as the additive semigroup $\mathbb N$ in the group of integers $\mathbb Z$, then the large commutative diagram gives a clearer information about the ideals structure of $\mathbf c \times_{\tau}^{\operatorname{piso}} \mathbb N$. We can identify that the left-hand and top exact sequences in diagram [7, Theorem 5.6] are indeed equivalent to the extension of the algebra $\mathcal K(\ell^2(\mathbb N,\mathbf c_0))$ of compact operators on the Hilbert module $\ell^2(\mathbb N,\mathbf c_0)$ by $\mathcal K(\ell^2(\mathbb N))$ provided by the algebra $\mathcal K(\ell^2(\mathbb N,\mathbf c))$ of compact operators on $\ell^2(\mathbb N,\mathbf c)$. Moreover it is known that $\operatorname{Prim} \mathcal K(\ell^2(\mathbb N,\mathbf c)) \simeq \operatorname{Prim}(\mathcal K(\ell^2(\mathbb N))) \otimes \mathbf c) \simeq \operatorname{Prim}\mathbf c$ is homeomorphic to $\mathbb N \cup \infty$. Together with a knowledge about the primitive ideal space of the Toeplitz C^* -algebra generated by the unilateral shift, our theorem on the composition series of ideals of $\mathbf c \times_{\tau}^{\operatorname{piso}} \mathbb N$ provides a complete description of the topology on the primitive ideal space of $\mathbf c \times_{\tau}^{\operatorname{piso}} \mathbb N$.

We begin with a section containing background material about the partial-isometric crossed product by semigroups of extendible endomorphisms. In Section 3, we prove the existence of a short exact sequence of partial-isometric crossed products, which generalizes [2, Theorem 2.2] of the semigroup $\mathbb N$. Then we consider this and the other natural exact sequence described earlier in [4], to get the composition series of ideals in $A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$.

We proceed to Section 4 by applying our results in Section 3 to the distinguished system $(B_{\Gamma^+}, \Gamma^+, \tau)$ and the extendible τ -invariant ideal $B_{\Gamma^+, \infty}$ of B_{Γ^+} . It can be seen from our Proposition 4.1 that the large commutative diagram of [7, Theorem 5.6] remains valid for any subgroup Γ of a totally ordered abelian group. Finally in the last section we describe the topology of primitive ideal space of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ by using this large diagram.

2. Preliminaries

A bounded operator V on a Hilbert space H is called an isometry if ||V(h)|| = ||h|| for all $h \in H$, which is equivalent to $V^*V = 1$. A bounded operator V on a Hilbert space H is called a *partial isometry* if it is isometry on $(\ker V)^{\perp}$. This is equivalent to $VV^*V = V$. If V is a partial isometry, then so is the adjoint V^* , where as for an isometry V, the adjoint V^* may not be an isometry unless V is unitary. Associated to a partial isometry V, there are two orthogonal projections V^*V and VV^* on the initial space $(\ker V)^{\perp}$ and on the range VH respectively. In a C^* -algebra A, an element $v \in A$ is called an isometry if $v^*v = 1$ and a partial isometry if $vv^*v = v$.

An isometric representation of Γ^+ on a Hilbert space H is a map $S: \Gamma^+ \to B(H)$ which satisfies $S_x := S(x)$ is an isometry, and $S_{x+y} = S_x S_y$ for all $x,y \in \Gamma^+$. So an isometric representation of $\mathbb N$ is determined by a single isometry S_1 . Similarly a partial-isometric representation of Γ^+ on a Hilbert space H is a map $V: \Gamma^+ \to B(H)$ which satisfies $V_x := V(x)$ is a partial isometry, and $V_{x+y} = V_x V_y$ for all $x,y \in \Gamma^+$. Note that the product VW of two partial isometries V and W is a partial isometry precisely when V^*V commutes with WW^* [7, Proposition 2.1]. Thus a partial isometry V is called a power partial isometry if V^n is a partial isometry for every $n \in \mathbb{N}$, so a partial-isometric representation of \mathbb{N} is determined by a single power partial isometry V_1 . If V is a partial-isometric representation of Γ^+ , then every $V_x V_x^*$ commutes with $V_t V_t^*$, and so does $V_x^* V_x$ with $V_t^* V_t$.

Now we consider a dynamical system (A, Γ^+, α) consisting of a C^* -algebra A, an action α of Γ^+ by endomorphisms of A such that $\alpha_0 = \mathrm{id}$. Because we deal with non unital C^* -algebras and non unital endomorphisms, we require every endomorphism α_x to be extendible to a strictly continuous endomorphism $\overline{\alpha}_x$ on the multiplier algebra M(A) of A. This happens precisely when there exists an approximate identity (a_λ) in A and a projection $p_{\alpha_x} \in M(A)$ such that $\alpha_x(a_\lambda)$ converges strictly to p_{α_x} in M(A).

Definition 2.1. A covariant isometric representation of (A, Γ^+, α) on a Hilbert space H is a pair (π, S) of a nondegenerate representation $\pi : A \to B(H)$ and an isometric representation of $S : \Gamma^+ \to B(H)$ such that $\pi(\alpha_x(a)) = S_x \pi(a) S_x^*$ for all $a \in A$ and $x \in \Gamma^+$.

An isometric crossed product of (A, Γ^+, α) is a triple (B, j_A, j_{Γ^+}) consisting of a C^* -algebra B, a canonical covariant isometric representation (j_A, j_{Γ^+}) in M(B) which satisfies the following:

- (i) for every covariant isometric representation (π, S) of (A, Γ^+, α) on a Hilbert space H, there exists a nondegenerate representation $\pi \times S$: $B \to B(H)$ such that $(\pi \times S) \circ j_A = \pi$ and $(\overline{\pi} \times \overline{S}) \circ j_{\Gamma^+} = S$; and
- (ii) B is generated by $j_A(A) \cup j_{\Gamma^+}(\Gamma^+)$, we actually have

$$B = \overline{\text{span}} \{ j_{\Gamma^+}(x)^* j_A(a) j_{\Gamma^+}(y) : x, y \in \Gamma^+, a \in A \}.$$

Note that a given system (A, Γ^+, α) could have a covariant isometric representation (π, S) only with $\pi = 0$. In this case the isometric crossed product yields no information about the system. If a system admits a non trivial covariant representation, then the isometric crossed product does exist, and it is unique up to isomorphism: if there is such a covariant isometric representation (t_A, t_{Γ^+}) of (A, Γ^+, α) in a C^* -algebra C, then there is an isomorphism of C onto B which takes (t_A, t_{Γ^+}) into (j_A, j_{Γ^+}) . Thus we write the isometric crossed product B as $A \times_{\alpha}^{\text{iso}} \Gamma^+$.

The partial-isometric crossed product of (A, Γ^+, α) is defined in a similar fashion involving partial-isometries instead of isometries.

Definition 2.2. A covariant partial-isometric representation of (A, Γ^+, α) on a Hilbert space H is a pair (π, S) of a nondegenerate representation $\pi: A \to B(H)$ and a partial-isometric representation $S: \Gamma^+ \to B(H)$ of Γ^+ such that $\pi(\alpha_x(a)) = S_x \pi(a) S_x^*$ for all $a \in A$ and $x \in \Gamma^+$. See in Remark 2.3 that this equation implies $S_x^* S_x \pi(a) = \pi(a) S_x^* S_x$ for $a \in A$ and $x \in \Gamma^+$. Moreover, [7, Lemma 4.2] shows that every (π, S) extends to a partial-isometric covariant representation $(\overline{\pi}, S)$ of $(M(A), \Gamma^+, \overline{\alpha})$, and the partial-isometric covariance is equivalent to $\pi(\alpha_x(a)) S_x = S_x \pi(a)$ and $S_x S_x^* = \overline{\pi}(\overline{\alpha}_x(1))$ for $a \in A$ and $x \in \Gamma^+$.

A partial-isometric crossed product of (A, Γ^+, α) is a triple (B, j_A, j_{Γ^+}) consisting of a C^* -algebra B, a canonical covariant partial-isometric representation (j_A, j_{Γ^+}) in M(B) which satisfies the following:

- (i) for every covariant partial-isometric representation (π, S) of (A, Γ^+, α) on a Hilbert space H, there exists a nondegenerate representation $\pi \times S : B \to B(H)$ such that $(\pi \times S) \circ j_A = \pi$ and $(\overline{\pi} \times \overline{S}) \circ j_{\Gamma^+} = S$; and
- (ii) B is generated by $j_A(A) \cup j_{\Gamma^+}(\Gamma^+)$, we actually have

$$B = \overline{\text{span}} \{ j_{\Gamma^+}(x)^* j_A(a) j_{\Gamma^+}(y) : x, y \in \Gamma^+, a \in A \}.$$

Unlike the theory of isometric crossed product: every system (A, Γ^+, α) admits a non trivial covariant partial-isometric representation (π, S) with π faithful [7, Example 4.6]. In fact [7, Proposition 4.7] shows that a canonical covariant partial-isometric representation (j_A, j_{Γ^+}) of (A, Γ^+, α) exists in the Toeplitz algebra \mathcal{T}_X associated to a discrete product system X of Hilbert bimodules over Γ^+ , which (i) and (ii) are fulfilled, and it is universal: if there is such a covariant partial-isometric representation (t_A, t_{Γ^+}) of (A, Γ^+, α) in a C^* -algebra C that satisfies (i) and (ii), then there is an isomorphism of C onto B which takes (t_A, t_{Γ^+}) into (j_A, j_{Γ^+}) . Thus we write the partial-isometric crossed product B as $A \times_{\alpha}^{\mathrm{piso}} \Gamma^+$.

Remark 2.3. Our special thanks go to B. Kwaśniewski for showing us the proof arguments in this remark. Assuming (π, S) is covariant, then by C^* -norm equation we have $\|\pi(a)S_x^* - S_x^*\pi(\alpha_x(a))\| = 0$, therefore $\pi(a)S_x^* = S_x^*\pi(\alpha_x(a))$ for all $a \in A$ and $x \in \Gamma^+$, which means that $S_x\pi(a) = \pi(\alpha_x(a))S_x$ for all

 $a \in A$ and $x \in \Gamma^+$. So $S_x^* S_x \pi(a) = S_x^* \pi(\alpha_x(a)) S_x = (\pi(\alpha_x(a^*)) S_x)^* S_x = (S_x \pi(a^*))^* S_x = \pi(a) S_x^* S_x$.

More details on the proof are available in [6, Lemma 1.2].

3. The short exact sequence of partial-isometric crossed products

Theorem 3.1. Suppose that $(A \times_{\alpha}^{\operatorname{piso}} \Gamma^+, i_A, V)$ is the partial-isometric crossed product of a dynamical system (A, Γ^+, α) , and I is an extendible α -invariant ideal of A. Then there is a short exact sequence

$$(3.1) \quad 0 \longrightarrow I \times_{\alpha}^{\operatorname{piso}} \Gamma^{+} \stackrel{\mu}{\longrightarrow} A \times_{\alpha}^{\operatorname{piso}} \Gamma^{+} \stackrel{\gamma}{\longrightarrow} A/I \times_{\tilde{\alpha}}^{\operatorname{piso}} \Gamma^{+} \longrightarrow 0,$$

where μ is an isomorphism of $I \times_{\alpha}^{\operatorname{piso}} \Gamma^{+}$ onto the ideal

$$\mathcal{D} := \overline{\operatorname{span}}\{V_x^*i_A(i)V_y : i \in I, \ x,y \in \Gamma^+\} \ \text{of} \ A \times_{\alpha}^{\operatorname{piso}} \Gamma^+.$$

If $q: A \to A/I$ is the quotient map, i_I , W denote the maps $I \to I \times_{\alpha}^{\operatorname{piso}} \Gamma^+$, $W: \Gamma^+ \to M(I \times_{\alpha}^{\operatorname{piso}} \Gamma^+)$, and similarly for $i_{A/I}$, U the maps $A/I \to A/I \times_{\tilde{\alpha}}^{\operatorname{piso}} \Gamma^+$, $\Gamma^+ \to M(A/I \times_{\tilde{\alpha}}^{\operatorname{piso}} \Gamma^+)$, then

$$\mu \circ i_I = i_A|_I, \quad \overline{\mu} \circ W = V \quad and \quad \gamma \circ i_A = i_{A/I} \circ q, \quad \overline{\gamma} \circ V = U.$$

Proof. We make some minor adjustment to the proof of [1, Theorem 3.1] for partial isometries. First, we check that \mathcal{D} is indeed an ideal of $A \times_{\alpha}^{\text{piso}} \Gamma^+$. Let $\xi = V_x^* i_A(i) V_y \in \mathcal{D}$. Then $V_s^* \xi$ is trivially contained in \mathcal{D} , and computations below show that $i_A(a)\xi$ and $V_s\xi$ are all in \mathcal{D} for $a \in A$ and $s \in \Gamma^+$:

$$\begin{split} i_A(a)\xi &= i_A(a)V_x^*i_A(i)V_y = (V_xi_A(a^*))^*i_A(i)V_y \\ &= (i_A(\alpha_x(a^*))V_x)^*i_A(i)V_y = V_x^*i_A(\alpha_x(a)i)V_y; \\ V_s\xi &= V_sV_x^*i_A(i)V_y = V_s(V_s^*V_sV_x^*V_x)V_x^*i_A(i)V_y \\ &= V_sV_u^*V_uV_x^*i_A(i)V_y, \quad u := \max\{s,x\} \\ &= (V_sV_s^*V_{u-s}^*)(V_{u-x}V_xV_x^*)i_A(i)V_y = V_{u-s}^*(V_uV_u^*V_uV_u^*)(V_{u-x}i_A(i))V_y \\ &= V_{u-s}^*V_uV_u^*i_A(\alpha_{u-x}(i))V_{u-x}V_y = V_{u-s}^*\overline{i}_A(\overline{\alpha}_u(1))i_A(\alpha_{u-x}(i))V_{u-x+y}. \end{split}$$

This ideal \mathcal{D} gives us a nondegenerate homomorphism $\psi: A \times_{\alpha}^{\operatorname{piso}} \Gamma^+ \to M(D)$ which satisfies $\psi(\xi)d = \xi d$ for $\xi \in A \times_{\alpha}^{\operatorname{piso}} \Gamma^+$ and $d \in \mathcal{D}$. Let $j_I: I \xrightarrow{i_A} A \times_{\alpha}^{\operatorname{piso}} \Gamma^+ \xrightarrow{\psi} M(\mathcal{D})$, and $S: \Gamma^+ \xrightarrow{V} M(A \times_{\alpha}^{\operatorname{piso}} \Gamma^+) \xrightarrow{\overline{\psi}} M(\mathcal{D})$. We use extendibility of ideal I to show j_I is nondegenerate. Take an approximate identity (e_{λ}) for I, and let $\varphi: A \to M(I)$ be the homomorphism satisfying $\varphi(a)i = ai$ for $a \in A$ and $i \in I$. Then $i_A(\alpha_s(e_{\lambda})i)$ converges in norm to $i_A(\overline{\varphi}(\overline{\alpha}_s(1_{M(A)}))i)$. However

$$i_A(\overline{\varphi}(\overline{\alpha}_s(1_{M(A)}))i) = \overline{i}_A(\overline{\alpha}_s(1_{M(A)}))i_A(i) = V_sV_s^*i_A(i).$$

So $i_A(\alpha_s(e_\lambda)i)$ converges in norm to $V_sV_s^*i_A(i)$. Since $j_I(e_\lambda)V_s^*i_A(i)V_t = V_s^*i_A(\alpha_s(e_\lambda)i)V_t$ by covariance, it follows that $j_I(e_\lambda)V_s^*i_A(i)V_t$ converges in norm to $V_s^*i_A(i)V_t$. We can similarly show that $V_s^*i_A(i)V_tj_I(e_\lambda)$ converges in

norm to $V_s^*i_A(i)V_t$. Thus $j_I(e_\lambda) \to 1_{M(\mathcal{D})}$ strictly, and hence j_I is nondegenerate.

We claim that the triple (\mathcal{D}, j_I, S) is a partial-isometric crossed product of (I, Γ^+, α) . A routine computations show the covariance of (j_I, S) for (I, Γ^+, α) . Suppose now (π, T) is a covariant representation of (I, Γ^+, α) on a Hilbert space \underline{H} . Let $\rho: A \xrightarrow{\varphi} M(I) \xrightarrow{\overline{\pi}} B(H)$. Then by extendibility of ideal I, that is $\overline{\alpha|_I} \circ \varphi = \varphi \circ \alpha$, the pair (ρ, T) is a covariant representation of (A, Γ^+, α) . The restriction $(\rho \times T)|_{\mathcal{D}}$ to \mathcal{D} of $\rho \times T$ is a nondegenerate representation of \mathcal{D} which satisfies the requirement $(\rho \times T)|_{\mathcal{D}} \circ j_I = \pi$ and $\overline{(\rho \times T)|_{\mathcal{D}}} \circ S = T$. Thus the triple (\mathcal{D}, j_I, S) is a partial-isometric crossed product for (I, Γ^+, α) , and we have the homomorphism $\mu = i_A|_I \times V$.

Next we show the exactness. Let Φ be a nondegenerate representation of $A \times_{\alpha}^{\operatorname{piso}}\Gamma^+$ with kernel \mathcal{D} . Since $I \subset \ker \Phi \circ i_A$, we can have a representation $\tilde{\Phi}$ of A/I, which together with $\overline{\Phi} \circ V$ is a covariant partial-isometric representation of $(A/I, \Gamma^+, \tilde{\alpha})$. Then $\tilde{\Phi} \times (\overline{\Phi} \circ V)$ lifts to Φ , and therefore $\ker \gamma \subset \ker \Phi = \mathcal{D}$. \square

Corollary 3.2. Let (A, Γ^+, α) be a dynamical system, and I an extendible α -invariant ideal of A. Then there is a commutative diagram:

Proof. The three row exact sequences follow from [4], the middle column from Theorem 3.1 and the right column exact sequence from [1]. By inspection on the spanning elements, one can see that $\mu(\ker \phi_I)$ is an ideal of $\ker \phi_A$ and $\mu^{\mathrm{iso}} \circ \phi_I = \phi_A \circ \mu$, thus first and second rows commute. Then Snake Lemma gives the commutativity of all rows and columns.

4. The example

We consider a dynamical system $(B_{\Gamma^+}, \Gamma^+, \tau)$ consisting of a unital C^* -subalgebra B_{Γ^+} of $\ell^\infty(\Gamma^+)$ spanned by the set $\{1_s: s \in \Gamma^+\}$ of characteristic functions 1_s of $\{x \in \Gamma^+: x \geq s\}$, the action τ of Γ^+ on B_{Γ^+} is given by $\tau_x(1_s) = 1_{s+x}$. The ideal $B_{\Gamma^+,\infty} = \overline{\operatorname{span}}\{1_i - 1_j: i < j \in \Gamma^+\}$ is an extendible τ -invariant ideal of B_{Γ^+} . Then we want to show in Proposition 4.1 that an

application of Corollary 3.2 to the system $(B_{\Gamma^+}, \Gamma^+, \tau)$ and the ideal $B_{\Gamma^+, \infty}$ gives [7, Theorem 5.6].

The crossed product $B_{\Gamma^+} \times_{\tau}^{\operatorname{iso}} \Gamma^+$ is a universal C^* -algebra generated by the canonical isometric representation t of Γ^+ : every isometric representation w of Γ^+ gives a covariant isometric representation (π_w, w) of $(B_{\Gamma^+}, \Gamma^+, \tau)$. Suppose $\{\varepsilon_x : x \in \Gamma^+\}$ is the usual orthonormal basis in $\ell^2(\Gamma^+)$, and let $T_s(\varepsilon_x) = \varepsilon_{x+s}$ for every $s \in \Gamma^+$. Then $s \mapsto T_s$ is an isometric representation of Γ^+ , and the Toeplitz algebra $\mathcal{T}(\Gamma)$ is the C^* -subalgebra of $B(\ell^2(\Gamma^+))$ generated by $\{T_s : s \in \Gamma^+\}$. So there exists a representation $\mathfrak{T} := \pi_T \times T$ of $B_{\Gamma^+} \times_{\tau}^{\operatorname{iso}} \Gamma^+$ on $\ell^2(\Gamma^+)$ such that $\mathfrak{T}(t_x) = T_x$ and $\mathfrak{T}(1_x) = T_x T_x^*$ for all $x \in \Gamma^+$. This representation is faithful by [3, Theorem 2.4]. Thus $B_{\Gamma^+} \times_{\tau}^{\operatorname{iso}} \Gamma^+$ and the Toeplitz algebra $\mathcal{T}(\Gamma) = \pi_T \times T(B_{\Gamma^+} \times_{\tau}^{\operatorname{iso}} \Gamma^+)$ are isomorphic, and the isomorphism takes the ideal $B_{\Gamma^+,\infty} \times_{\tau}^{\operatorname{iso}} \Gamma^+$ of $B_{\Gamma^+} \times_{\tau}^{\operatorname{iso}} \Gamma^+$ onto the commutator ideal $\mathcal{C}_{\Gamma} = \overline{\operatorname{span}}\{T_x(1-TT^*)T_y^* : x, y \in \Gamma^+\}$ of $\mathcal{T}(\Gamma)$.

Similarly, the crossed product $B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$ has a partial-isometric version of universal property by [7, Proposition 5.1]: every partial-isometric representation v of Γ^+ gives a covariant partial-isometric representation (π_v, v) of $(B_{\Gamma^+}, \Gamma^+, \tau)$ with $\pi_v(1_x) = v_x v_x^*$, and then $B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$ is the universal C^* -algebra generated by the canonical partial-isometric representation v of Γ^+ . Now since $x \mapsto T_x$ and $x \mapsto T_x^*$ are partial-isometric representations of Γ^+ in the Toeplitz algebra $\mathcal{T}(\Gamma)$, there exist (by the universality) a homomorphism φ_T and φ_{T^*} of $B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$ onto $\mathcal{T}(\Gamma)$.

Next consider the algebra $C(\hat{\Gamma})$ generated by $\{\lambda_x : x \in \Gamma\}$ of the evaluation maps $\lambda_x(\xi) = \xi(x)$ on $\hat{\Gamma}$. Let ψ_T and ψ_{T^*} be the homomorphisms of $\mathcal{T}(\Gamma)$ onto $C(\hat{\Gamma})$ defined by $\psi_T(T_x) = \lambda_x$ and $\psi_{T^*}(T_x) = \lambda_{-x}$.

Proposition 4.1 ([7, Theorem 5.6]). Let Γ^+ be the positive cone in a totally ordered abelian group Γ . Then the following commutative diagram exists:

where Ψ maps each generator $v_x \in B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$ to $\delta_x^* \in C^*(\Gamma) \simeq C(\hat{\Gamma})$.

Proof. Apply Corollary 3.2 to the system $(B_{\Gamma^+}, \Gamma^+, \tau)$ and the extendible ideal $B_{\Gamma^+,\infty}$. Let $Q^{\operatorname{piso}} := B_{\Gamma^+}/B_{\Gamma^+,\infty} \times_{\tilde{\tau}}^{\operatorname{piso}} \Gamma^+$ and $Q^{\operatorname{iso}} := B_{\Gamma^+}/B_{\Gamma^+,\infty} \times_{\tilde{\tau}}^{\operatorname{iso}} \Gamma^+$. Then we have:

$$(4.2) \quad \begin{array}{c} 0 & 0 & 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow \ker \phi_{B_{\Gamma^{+},\infty}} \longrightarrow B_{\Gamma^{+},\infty} \times_{\tau}^{\operatorname{piso}} \Gamma^{+} \longrightarrow B_{\Gamma^{+},\infty} \times_{\tau}^{\operatorname{iso}} \Gamma^{+} \longrightarrow 0 \\ \downarrow & \mu \downarrow & \downarrow \mu_{B_{\Gamma^{+},\infty}} \\ \downarrow & \mu \downarrow & \downarrow \mu_{B_{\Gamma^{+},\infty}} \\ \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow \ker \phi_{Q} \longrightarrow Q^{\operatorname{piso}} \longrightarrow Q^{\operatorname{piso}} \longrightarrow Q^{\operatorname{piso}} \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 \end{array}$$

We claim that exact sequences in this diagram and (4.1) are equivalent. The middle exact sequences of (4.1) and (4.2) are trivially equivalent via the isomorphism $\mathfrak{T}: B_{\Gamma^+} \times_{\tau}^{\mathrm{iso}} \Gamma^+ \to \mathcal{T}(\Gamma)$. By viewing B_{Γ^+} as the algebra of functions that have limit, the map $f \in B_{\Gamma^+} \mapsto \lim_{x \in \Gamma^+} f(x)$ induces an isomorphism $B_{\Gamma^+}/B_{\Gamma^+,\infty} \to \mathbb{C}$, which intertwines the action $\tilde{\tau}$ and the trivial action id on \mathbb{C} . So $(B_{\Gamma^+}/B_{\Gamma^+,\infty},\Gamma^+,\tilde{\tau}) \simeq (\mathbb{C},\Gamma^+,\mathrm{id})$. Moreover, \mathfrak{T} combines with the isomorphism $h: B_{\Gamma^+}/B_{\Gamma^+,\infty} \times_{\tilde{\tau}}^{\mathrm{iso}} \Gamma^+ \to \mathbb{C} \times_{\mathrm{id}}^{\mathrm{iso}} \Gamma^+ \to C^*(\Gamma) \simeq C(\hat{\Gamma})$ to identify the right-hand exact sequence equivalently to $0 \to \mathcal{C}_{\Gamma} \to \mathcal{T}(\Gamma) \stackrel{\psi_{T^*}}{\to} C(\hat{\Gamma}) \to 0$.

For the bottom sequence, we consider the pair of

$$\iota_{\mathbb{C}}: z \in \mathbb{C} \mapsto z1_{\mathcal{T}(\Gamma)} \text{ and } \iota_{\Gamma^+}: x \in \Gamma^+ \mapsto T_x^* \in \mathcal{T}(\Gamma).$$

It is a partial-isometric covariant representation, such that $(\mathcal{T}(\Gamma), \iota_{\mathbb{C}}, \iota_{\Gamma^+})$ is a partial-isometric crossed product of $(\mathbb{C}, \Gamma^+, \mathrm{id})$. So we have an isomorphism

$$\Upsilon: Q^{\operatorname{piso}} \to \mathbb{C} \times_{\operatorname{id}}^{\operatorname{piso}} \Gamma^+ \stackrel{\iota}{\to} \mathcal{T}(\Gamma) \text{ in which } \Upsilon(i_{\Gamma^+}(x)) = T_x^* \text{ for all } x,$$

and moreover if (j_Q,u) denotes the canonical covariant partial-isometric representation of the system $(Q:=B_{\Gamma^+}/B_{\Gamma^+,\infty},\Gamma^+,\tilde{\tau})$ in Q^{piso} , then Υ satisfies the equations $\Upsilon(u_x)=T_x^*$ and $\Upsilon(j_Q(1_x+B_{\Gamma^+,\infty}))=\iota_{\mathbb{C}}(\lim_y 1_x(y))=1$ for all $x\in\Gamma^+$. To see $\Upsilon(\ker\phi_Q)=\mathcal{C}_{\Gamma}$, recall from [4, Proposition 2.3] that

$$\ker \phi_Q := \overline{\operatorname{span}}\{u_x^* j_Q(a)(1 - u_z^* u_z) u_y : a \in Q, \ x, y, z \in \Gamma^+\}.$$

Since $\Upsilon(u_x^*j_Q(a)(1-u_z^*u_z)u_y)$ is a scalar multiplication of $T_x(1-T_zT_z^*)T_y^*$, therefore $\Upsilon(\ker\phi_Q)=\mathcal{C}_{\Gamma}$. Consequently the two exact sequences are equivalent:

For the second column exact sequence, we note that the isomorphism $j: Q^{\operatorname{piso}} \simeq \mathbb{C} \times_{\operatorname{id}}^{\operatorname{piso}} \Gamma^+ \to \mathcal{T}(\Gamma)$ satisfies $j \circ \gamma = \varphi_{T^*}$. This implies

$$B_{\Gamma^+,\infty} \times_{\tau}^{\operatorname{piso}} \Gamma^+ \simeq \ker(j \circ \gamma) = \ker \varphi_{T^*},$$

and therefore the second column sequence of diagram (4.1) is equivalent to $0 \to \ker \varphi_{T^*} \to B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+ \to \mathcal{T}(\Gamma) \to 0$.

Next we are working for the first row. The homomorphism $\phi_{B_{\Gamma^+}}$ in the following diagram

restricts to the homomorphism $\phi_{B_{\Gamma^+,\infty}}$ of the ideal $B_{\Gamma^+,\infty} \times_{\tau}^{\text{piso}} \Gamma^+ \simeq \ker \varphi_{T^*}$ onto $B_{\Gamma^+,\infty} \times_{\tau}^{\text{iso}} \Gamma^+ \simeq \mathcal{C}_{\Gamma}$. So the homomorphism $\varphi_T|: \ker \varphi_{T^*} \to \mathcal{C}_{\Gamma}$ has kernel $I := \ker \varphi_{T^*} \cap \ker \varphi_T$, and therefore first row exact sequence of the two diagrams are indeed equivalent.

Finally we show that such Ψ exists. Consider $C(\hat{\Gamma}) \simeq C^*(\Gamma) \simeq \mathbb{C} \times_{\mathrm{id}} \Gamma$ is the C^* -algebra generated by the unitary representation $x \in \Gamma \mapsto \delta_x \in \mathbb{C} \times_{\mathrm{id}} \Gamma$. Then we have a homomorphism $\pi_{\delta^*} \times \delta^* : B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+ \to \mathbb{C} \times_{\operatorname{id}} \Gamma$ which satisfies $\pi_{\delta^*} \times \delta^*(v_x) = \delta_x^*$ for all $x \in \Gamma^+$, and hence it is surjective. By looking at the spanning elements of $\ker \varphi_T$ and $\ker \varphi_{T^*}$ we can see that these two ideals are contained in $\ker(\pi_{\delta^*} \times \delta^*)$, therefore $\mathcal{J} := \ker \varphi_T + \ker \varphi_{T^*}$ must be also in $\ker(\pi_{\delta^*} \times \delta^*)$. For the other inclusion, let ρ be a unital representation of $B_{\Gamma^+} \times_{\tau}^{\operatorname{piso}} \Gamma^+$ on a Hilbert space H_{ρ} with $\ker \rho = \mathcal{J}$. Then for $s \in \Gamma^+$ we have $\rho((1-v_sv_s^*)-(1-v_s^*v_s))=0 \text{ because } 1-v_sv_s^* \in \ker \varphi_{T^*} \text{ and } 1-v_s^*v_s \in \ker \varphi_{T}$ belong to \mathcal{J} . So $0 = \rho(v_s^* v_s - v_s v_s^*)$, which implies that $\rho(v_s^* v_s) = \rho(v_s v_s^*)$. On the other hand the equation $\rho((1-v_sv_s^*)+(1-v_s^*v_s))=0$ gives $\rho(v_sv_s^*)=I$. Therefore $\rho(v_s v_s^*) = \rho(v_s^* v_s) = I$, and this means $\rho(v_s)$ is unitary for every $s \in \Gamma^+$. Consequently a representation $\tilde{\rho} : \mathbb{C} \times_{\mathrm{id}} \Gamma \to B(H_{\rho})$ exists, and it satisfies $\tilde{\rho} \circ (\pi_{\delta^*} \times \delta^*) = \rho$. Thus $\ker \pi_{\delta^*} \times \delta^* \subset \ker \rho = \mathcal{J}$, and the composition $\pi_{\delta^*} \times \delta^*$ with the Fourier transform $C^*(\Gamma) \simeq C(\hat{\Gamma})$ is the wanted homomorphism Ψ.

5. The primitive ideals of $c \times_{\tau}^{piso} \mathbb{N}$

Suppose Γ^+ is now the additive semigroup $\mathbb N$. The algebra $B_{\mathbb N}$ is conveniently viewed as the C^* -algebra $\mathbf c$ of convergent sequences, the ideal $B_{\mathbb N,\infty}$ with $\mathbf c_0$, and the action τ of $\mathbb N$ on $\mathbf c$ is generated by the unilateral shift: $\tau_1(x_0,x_1,x_2,\ldots)=(0,x_0,x_1,x_2,\ldots)$. The universal C^* -algebra $\mathbf c \times_{\tau}^{\operatorname{piso}} \mathbb N$ is generated by a power partial isometry $v:=i_{\mathbb N}(1)$. The Toeplitz algebra $\mathcal T(\mathbb Z)$ is the C^* -subalgebra of $B(\ell^2(\mathbb N))$ generated by isometries $\{T_n:n\in\mathbb N\}$, where $T_n(e_i)=e_{n+i}$ on the set of usual orthonormal basis $\{e_i:i\in\mathbb N\cup\{0\}\}$ of $\ell^2(\mathbb N)$, and the commutator

ideal of $\mathcal{T}(\mathbb{Z})$ is $\mathcal{K}(\ell^2(\mathbb{N}))$. Kernels of φ_T and φ_{T^*} are identified in [7, Lemma 6.2 by

$$\ker \varphi_T = \overline{\operatorname{span}}\{g_{i,j}^m : i, j, m \in \mathbb{N}\}; \quad \ker \varphi_{T^*} = \overline{\operatorname{span}}\{f_{i,j}^m : i, j, m \in \mathbb{N}\},$$

where

$$g_{i,j}^m = v_i^* v_m v_m^* (1 - v^* v) v_j$$
 and $f_{i,j}^m = v_i v_m^* v_m (1 - v v^*) v_j^*$.

Moreover $\mathcal{I} := \ker \varphi_T \cap \ker \varphi_{T^*}$ is an essential ideal in $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ [7, Lemma 6.8], given by

$$\overline{\operatorname{span}}\{f_{i,j}^m - f_{i,j}^{m+1} = g_{m-i,m-j}^m - g_{m-i,m-j}^{m+1} : m \in \mathbb{N}, \ 0 \leq i,j \leq m\}.$$

The main point of [7, §6] is to show that there exist isomorphisms of $\ker \varphi_T$ and $\ker \varphi_{T^*}$ onto the algebra

$$\mathcal{A} := \{ f : \mathbb{N} \to K(\ell^2(\mathbb{N})) : f(n) \in P_n K(\ell^2(\mathbb{N})) P_n \text{ and } \varepsilon_{\infty}(f) = \lim_n f(n) \text{ exists} \},$$

where $P_n:=1-T_{n+1}T_{n+1}^*$ is the projection of $\ell^2(\mathbb{N})$ onto the subspace spanned by $\{e_i: i=0,1,2,\ldots,n\}$, and such that they restrict to isomorphisms of \mathcal{I} onto the ideal

$$\mathcal{A}_0 := \{ f \in \mathcal{A} : \lim_n f(n) = 0 \} \text{ of } \mathcal{A}.$$

 $\mathcal{A}_0 := \{ f \in \mathcal{A} : \lim_n f(n) = 0 \} \text{ of } \mathcal{A}.$ We shall show in Proposition 5.1 that \mathcal{A} and \mathcal{A}_0 are related to the algebras of compact operators on the Hilbert **c**-module $\ell^2(\mathbb{N}, \mathbf{c})$ and on the closed sub-c-module $\ell^2(\mathbb{N}, \mathbf{c}_0)$. We supply our readers with some basic theory of the C^* -algebra of operators on this Hilbert module, and let us begin with recalling the module structure of $\ell^2(\mathbb{N}, \mathbf{c})$ (and its closed sub-module). The vector space $\ell^2(\mathbb{N}, \mathbf{c})$, containing all **c**-valued functions $\mathbf{a} : \mathbb{N} \to \mathbf{c}$ such that the series $\sum_{n\in\mathbb{N}} \mathsf{a}(n)^*\mathsf{a}(n)$ converges in the norm of \mathbf{c} , forms a Hilbert \mathbf{c} -module with the module structure defined by $(\mathbf{a} \cdot x)(n) = \mathbf{a}(n)x$ for $x \in \mathbf{c}$, and its **c**-valued inner product given by $\langle a, b \rangle = \sum_{n \in \mathbb{N}} a(n)^* b(n)$. In fact the module $\ell^2(\mathbb{N}, \mathbf{c})$ is naturally isomorphic to the Hilbert module $\ell^2(\mathbb{N}) \otimes \mathbf{c}$ that arises from the completion of algebraic (vector space) tensor product $\ell^2(\mathbb{N}) \odot \mathbf{c}$ associated to the **c**-valued inner product defined on simple tensor product by $\langle \xi \otimes x, \eta \otimes y \rangle = \langle \xi, \eta \rangle x^* y$ for $\xi, \eta \in \ell^2(\mathbb{N})$ and $x, y \in \mathbf{c}$. The isomorphism is implemented by the map ϕ that takes $(e_i \otimes x) \in \ell^2(\mathbb{N}) \otimes \mathbf{c}$ to the element $\phi(e_i \otimes x) \in \ell^2(\mathbb{N}, \mathbf{c})$ which is the function $[\phi(e_i \otimes x)](n) = \begin{cases} x & \text{if } i = n \\ 0 & \text{otherwise.} \end{cases}$ By exactly the same arguments,

we see that the two Hilbert \mathbf{c}_0 -modules $\ell^2(\mathbb{N}, \mathbf{c}_0)$ and $\ell^2(\mathbb{N}) \otimes \mathbf{c}_0$ are isomorphic. However since \mathbf{c}_0 is an ideal of \mathbf{c} , it follows that the \mathbf{c}_0 -module $\ell^2(\mathbb{N}, \mathbf{c}_0)$ is a closed sub-**c**-module of $\ell^2(\mathbb{N},\mathbf{c})$, and respectively $\ell^2(\mathbb{N})\otimes\mathbf{c}_0$ is a closed sub-**c**-module of $\ell^2(\mathbb{N}) \otimes \mathbf{c}$. Moreover the **c**-module isomorphism ϕ restricts to

 \mathbf{c}_0 -module isomorphism $\ell^2(\mathbb{N}, \mathbf{c}_0) \simeq \ell^2(\mathbb{N}) \otimes \mathbf{c}_0$.

Next, we consider the C^* -algebra $\mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))$ of adjointable operators on $\ell^2(\mathbb{N},\mathbf{c})$, and the ideal $\mathcal{K}(\ell^2(\mathbb{N},\mathbf{c}))$ of $\mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))$ spanned by the set $\{\theta_{\mathsf{a},\mathsf{b}}:$ $a, b \in \ell^2(\mathbb{N}, \mathbf{c})$ of compact operators on the module $\ell^2(\mathbb{N}, \mathbf{c})$. The algebra $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))$ is defined by the same arguments, and note that $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))$ is an ideal of $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))$. The isomorphism of two modules $\ell^2(\mathbb{N}, \mathbf{c})$ and $\ell^2(\mathbb{N}) \otimes \mathbf{c}$, implies that $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c})) \simeq \mathcal{K}(\ell^2(\mathbb{N}) \otimes \mathbf{c})$, which by the Hilbert module theorem, this is the C^* -algebraic tensor product $\mathcal{K}(\ell^2(\mathbb{N})) \otimes \mathbf{c}$ of $\mathcal{K}(\ell^2(\mathbb{N}))$ and \mathbf{c} . We shall often use the characteristic functions $\{1_n : n \in \mathbb{N}\}$ as generator elements of \mathbf{c} and the spanning set $\{\theta_{e_i \otimes 1_n, e_j \otimes 1_n} : i, j, n \in \mathbb{N}\}$ of $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))$ in our computations.

There is another ingredient that we need to consider to state the Proposition. Suppose $S \in \mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))$ is an operator defined by $S(\mathsf{a})(i) = \mathsf{a}(i-1)$ for $i \geq 1$ and zero otherwise. One can see that $S^*S = 1$, i.e., S is an isometry. Let $p \in \mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))$ be the projection $(p(\mathsf{a}))(n) = 1_n \mathsf{a}(n)$ for $\mathsf{a} \in \ell^2(\mathbb{N},\mathbf{c})$, and similarly $q \in \mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))$ be the projection $(q(\mathsf{a}))(n) = 1_n \mathsf{a}(n)$ for $\mathsf{a} \in \ell^2(\mathbb{N},\mathbf{c}_0)$. Then the following two partial isometric representations of \mathbb{N} in $p\mathcal{L}(\ell^2(\mathbb{N},\mathbf{c}))p$ defined by

$$w: n \in \mathbb{N} \mapsto pS_n^*p$$
 and $t: n \in \mathbb{N} \mapsto pS_np$,

induce the representations $\pi_w \times w$ and $\pi_t \times t$ of $\mathbf{c} \times_{\tau}^{\text{piso}} \mathbb{N}$ in $p\mathcal{L}(\ell^2(\mathbb{N}, \mathbf{c}))p$ which satisfy $\pi_w \times w(v_i) = pS_i^*p$ and $\pi_t \times t(v_i) = pS_ip$ for all $i \in \mathbb{N}$. These $\pi_w \times w$ and $\pi_t \times t$ are faithful representations [4, Example 4.3].

Proposition 5.1. The representations $\pi_w \times w$ and $\pi_t \times t$ map $\ker \varphi_T$ and $\ker \varphi_{T^*}$ isomorphically onto the full corner $p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p$. Moreover, they restrict to isomorphisms of the ideal $\ker \varphi_T \cap \ker \varphi_{T^*}$ onto the full corner $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$.

Remark 5.2. It follows from this proposition that Prim $\ker \varphi_T$ and Prim $\ker \varphi_{T^*}$ are both homeomorphic to Prim \mathbf{c} . In fact, since $\ker \varphi_{T^*} \simeq \mathbf{c}_0 \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ by [2, Corollary 3.1], we can therefore deduce that $\mathbf{c}_0 \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ is Morita equivalent to $\mathcal{K}(\ell^2(\mathbb{N},\mathbf{c}))$. This is a useful fact for our subsequential work on the partial-isometric crossed product of lattice semigroup $\mathbb{N} \times \mathbb{N}$.

Proof of Proposition 5.1. We only have to show that

$$\pi_t \times t(\ker \varphi_{T^*}) = p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \text{ and}$$
$$\pi_t \times t(\ker \varphi_T \cap \ker \varphi_{T^*}) = q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q.$$

The rest of arguments is done in [4, Example 4.3].

Note that the algebra $p\mathcal{K}(\ell^2(\mathbb{N},\mathbf{c}))p$ is spanned by $\{p\theta_{e_i\otimes 1_n,e_j\otimes 1_n}^{\mathbf{c}}p:i,j,n\in\mathbb{N}\}$. Since $\pi_t \times t(f_{i,j}^n) = p\theta_{e_i\otimes 1_n,e_j\otimes 1_n}^{\mathbf{c}}p$ for every $i,j,n\in\mathbb{N}$, therefore $\pi_t \times t(\ker \varphi_{T^*}) = p\mathcal{K}(\ell^2(\mathbb{N},\mathbf{c}))p$.

Similarly we consider that $\{q\theta_{e_i\otimes 1_{\{n\}},e_j\otimes 1_{\{n\}}}^{\mathbf{c}_0}q: i,j\leq n\in\mathbb{N}\}$ spans $q\mathcal{K}(\ell^2(\mathbb{N},\mathbf{c}_0))q$. We use the equation $\theta_{e_i\otimes 1_n,e_j\otimes 1_0}^{\mathbf{c}}=\theta_{e_i\otimes 1_n,e_j\otimes 1_n}^{\mathbf{c}}$ for every $n\in\mathbb{N}$, in the computations below, to see that

$$\pi_t \times t(f_{i,j}^n - f_{i,j}^{n+1}) = p(\theta_{e_i \otimes 1_n, e_j \otimes 1_0}^{\mathbf{c}} - \theta_{e_i \otimes 1_{n+1}, e_j \otimes 1_0}^{\mathbf{c}})p$$

$$= p(\theta_{(e_i \otimes 1_n) - (e_i \otimes 1_{n+1}), (e_j \otimes 1_0)}^{\mathbf{c}})p$$

$$= p(\theta_{e_i \otimes 1_{\{n\}}, e_j \otimes 1_0}^{\mathbf{c}})p$$

$$= p(\theta_{e_i \otimes 1_{\{n\}}, e_j \otimes 1_{\{n\}}}^{\mathbf{c}}) p.$$

To convince that every $p(\theta_{e_i \otimes 1_{\{n\}}, e_j \otimes 1_{\{n\}}}^{\mathbf{c}})p$ belongs to $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$, we need the embedding $\iota^{\mathcal{K}}$ of $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$ in $p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p$ stated in Lemma 5.3. In fact, every element $p(\theta_{e_i \otimes 1_{\{n\}}, e_j \otimes 1_{\{n\}}}^{\mathbf{c}})p$ spans $\iota^{\mathcal{K}}(q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q)$, therefore $\pi_t \times t(\ker \varphi_{T^*} \cap \ker \varphi_T) = \iota^{\mathcal{K}}(q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q)$.

Lemma 5.3. Let $p \in \mathcal{L}(\ell^2(\mathbb{N}, \mathbf{c}))$ and $q \in \mathcal{L}(\ell^2(\mathbb{N}, \mathbf{c}_0))$ are the projections defined by $(p(\mathbf{a}))(n) = 1_n \mathbf{a}(n)$ for $\mathbf{a} \in \ell^2(\mathbb{N}, \mathbf{c})$, and $(q(\mathbf{a}))(n) = 1_n \mathbf{a}(n)$ for $\mathbf{a} \in \ell^2(\mathbb{N}, \mathbf{c}_0)$. Then the full corner $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$ embeds naturally via $\iota^{\mathcal{K}}(q\theta_{\mathbf{a}, \mathbf{b}}^{\mathbf{c}_0}q) = p\theta_{\mathbf{a}, \mathbf{b}}^{\mathbf{c}}p$ as an ideal in $p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p$, and there exists a short exact sequence

$$0 \longrightarrow q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q \xrightarrow{\iota^{\mathcal{K}}} p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}(\ell^2(\mathbb{N})) \longrightarrow 0,$$

where $q^{\mathcal{K}}(p\theta_{\mathsf{a},b}^{\mathsf{c}}p) = \theta_{x,y}$ with $x, y \in \ell^2(\mathbb{N})$ are given by $x_i = \lim_{n \to \infty} (1_i \mathsf{a}(i))(n)$ and $y_i = \lim_{n \to \infty} (1_i \mathsf{b}(i))(n)$. In particular we have

$$\begin{split} q^{\mathcal{K}}(p\theta_{e_{i}\otimes 1_{n},e_{j}\otimes 1_{m}}^{\mathbf{c}}p) &= q^{\mathcal{K}}(\theta_{p(e_{i}\otimes 1_{n}),p(e_{j}\otimes 1_{m})}^{\mathbf{c}}) \\ &= q^{\mathcal{K}}(\theta_{e_{i}\otimes 1_{n\vee i},e_{j}\otimes 1_{m\vee j}}^{\mathbf{c}}) \\ &= T_{i}(1-TT^{*})T_{j}^{*} \in \mathcal{K}(\ell^{2}(\mathbb{N})). \end{split}$$

Proof. Apply [5, Lemma 2.6] for the module $X := \ell^2(\mathbb{N}, \mathbf{c})$ and $I = \mathbf{c}_0$. In this case we have the submodule $XI = \ell^2(\mathbb{N}, \mathbf{c}_0)$. Note that if $\mathbf{a} \in \ell^2(\mathbb{N}, \mathbf{c})$, then every sequence $\mathbf{a}(i) \in \mathbf{c}$ is convergent in \mathbb{C} , and the map $\mathbf{q} : \mathbf{a} \mapsto (\mathbf{q}(\mathbf{a}))(i) = \lim_{n \to \infty} (\mathbf{a}(i))(n)$ gives $0 \to \ell^2(\mathbb{N}, \mathbf{c}_0) \to \ell^2(\mathbb{N}, \mathbf{c}) \stackrel{\mathsf{q}}{\to} \ell^2(\mathbb{N}) \to 0$. Moreover [5, Lemma 2.6] proves that $\iota^{\mathcal{K}}(\theta_{\mathbf{a},\mathbf{b}}^{XI}) = \theta_{\mathbf{a},\mathbf{b}}^{X}$ and $q^{\mathcal{K}}(\theta_{\mathbf{a},\mathbf{b}}^{X}) = \theta_{\mathbf{q}(\mathbf{a}),\mathbf{q}(\mathbf{b})}^{X/XI}$ give the exactness of the sequence

$$0 \longrightarrow \mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0)) \stackrel{\iota^{\mathcal{K}}}{\longrightarrow} \mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c})) \stackrel{q^{\mathcal{K}}}{\longrightarrow} \mathcal{K}(\ell^2(\mathbb{N})) \longrightarrow 0.$$

Since $\iota^{\mathcal{K}}(q\theta_{\mathsf{a},\mathsf{b}}^{XI}q) = \theta_{q(\mathsf{a}),q(\mathsf{b})}^{X} = p\theta_{\mathsf{a},\mathsf{b}}^{X}p$ for every a and b in $\ell^{2}(\mathbb{N},\mathbf{c}_{0})$, the corner $q\mathcal{K}(\ell^{2}(\mathbb{N},\mathbf{c}_{0}))q$ is embedded into $p\mathcal{K}(\ell^{2}(\mathbb{N},\mathbf{c}))p$ such that $q^{\mathcal{K}}$ is defined by $q^{\mathcal{K}}(p\theta_{\mathsf{a},\mathsf{b}}^{X}p) = q^{\mathcal{K}}(\theta_{p(\mathsf{a}),p(\mathsf{b})}^{X}) = \theta_{x,y}$ where $x_{i} = \lim_{n \to \infty} (1_{i}\mathsf{a}(i))(n)$ and $y_{i} = \lim_{n \to \infty} (1_{i}\mathsf{b}(i))(n)$. Thus we obtain the required exact sequence.

Proposition 5.4. There are isomorphisms $\Theta: p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \to \ker \varphi_T$ and $\Theta_*: p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \to \ker \varphi_{T^*}$ defined by $\Theta(p\theta^{\mathbf{c}}_{e_i\otimes 1_n, e_j\otimes 1_n}p) = g^n_{i,j}$ and

 $\Theta_*(p\theta_{e_i\otimes 1_n,e_j\otimes 1_n}^{\mathbf{c}}p)=f_{i,j}^n$ for all $i,j,n\in\mathbb{N}$ such that the following commutative diagram has all rows and columns exact:

$$(5.1) \qquad \begin{matrix} 0 & 0 & 0 & 0 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & \rightarrow q\mathcal{K}(\ell^{2}(\mathbb{N}, \mathbf{c}_{0}))q \xrightarrow{\iota^{\mathcal{K}}} p\mathcal{K}(\ell^{2}(\mathbb{N}, \mathbf{c}))p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}(\ell^{2}(\mathbb{N})) \longrightarrow 0 \\ \iota^{\mathcal{K}} \circ \alpha \downarrow & \downarrow \Theta_{*} & \downarrow \\ 0 & \rightarrow p\mathcal{K}(\ell^{2}(\mathbb{N}, \mathbf{c}))p \xrightarrow{\Theta} \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N} \xrightarrow{\varphi_{T}} \mathcal{T}(\mathbb{Z}) \longrightarrow 0 \\ q^{\mathcal{K}} \downarrow & \varphi_{T^{*}} \downarrow & \psi_{T^{*}} \downarrow \\ 0 & \rightarrow \mathcal{K}(\ell^{2}(\mathbb{N})) \longrightarrow \mathcal{T}(\mathbb{Z}) \xrightarrow{\psi_{T}} \mathcal{C}(\mathbb{T}) \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 \end{matrix}$$

Proof. We apply Proposition 4.1 to the system $(\mathbf{c}, \mathbb{N}, \tau)$. Let $\{v_i : i \in \mathbb{N}\}$ denote the generators of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$, and $\{\delta_i : i \in \mathbb{Z}\}$ the generator of $C^*(\mathbb{Z})$. Then the homomorphism $\Psi : \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N} \to C(\mathbb{T})$ given by Proposition 4.1 satisfies $\Psi(v_i) = \delta_i^* = (z \mapsto \overline{z}^i) \in C(\mathbb{T})$ for every $i \in \mathbb{N}$. Moreover $\Theta = (\pi_w \times w)^{-1}$ and $\Theta_* = (\pi_t \times t)^{-1}$, by Proposition 5.1, satisfy $\Theta(p\theta^{\mathbf{c}}_{e_i \otimes 1_n, e_j \otimes 1_n} p) = g^n_{i,j}$ and $\Theta_*(p\theta^{\mathbf{c}}_{e_i \otimes 1_n, e_j \otimes 1_n} p) = f^n_{i,j}$ for all $i, j, n \in \mathbb{N}$. So the first row sequence is exact, and which is equivalent to the one of (4.1) for $\Gamma^+ = \mathbb{N}$ because

$$0 \longrightarrow \mathcal{I} \xrightarrow{\mathrm{id}} \ker \varphi_{T^*} \xrightarrow{\varphi_T|} \mathcal{K}(\ell^2(\mathbb{N})) \longrightarrow 0$$

$$\uparrow_{t_t \times t} \downarrow \qquad \qquad \downarrow_{\mathrm{id}} \downarrow$$

$$0 \longrightarrow q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q \xrightarrow{\iota^{\mathcal{K}}} p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}(\ell^2(\mathbb{N})) \longrightarrow 0.$$

For the first column we use the automorphism α of $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$ defined on its spanning element by $\alpha(q\theta^{\mathbf{c}_0}_{e_i\otimes 1_{\{n\}}, e_j\otimes 1_{\{n\}}}q) = q\theta^{\mathbf{c}_0}_{e_{n-i}\otimes 1_{\{n\}}, e_{n-j}\otimes 1_{\{n\}}}q$. Then by inspections on the spanning elements of the algebras involved, we can see that the diagram (5.1) commutes.

Thus we know from the diagram that the set $\operatorname{Prim} \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ is given by the sets $\operatorname{Prim} \mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))$ and $\operatorname{Prim} \mathcal{T}(\mathbb{Z})$. Since

$$\operatorname{Prim} \mathcal{T}(\mathbb{Z}) = \operatorname{Prim} \mathcal{K}(\ell^{2}(\mathbb{N})) \cup \operatorname{Prim} C(\mathbb{T}) = \{0\} \cup \mathbb{T},$$

and $\operatorname{Prim} \mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))$ is homeomorphic to

$$\operatorname{Prim} \mathbf{c} = \operatorname{Prim} \mathbf{c}_0 \cup \operatorname{Prim} \mathbb{C} \simeq \mathbb{N} \cup \{\infty\},\,$$

therefore $\operatorname{Prim} \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ consists of a copy of $\{I_n\}$ of \mathbb{N} embedded as an open subset, a copy of $\{J_z\}$ of \mathbb{T} embedded as a closed subset. We identify these ideals in Proposition 5.7 and Lemma 5.12.

Note for now that $\ker \varphi_T$ and $\ker \varphi_{T^*}$ are primitive ideals of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$: the Toeplitz representation T of $\mathcal{T}(\mathbb{Z})$ on $\ell^2(\mathbb{N})$ is irreducible by [8, Theorem 3.13], and φ_T and φ_{T^*} are surjective homomorphisms of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ onto $\mathcal{T}(\mathbb{Z})$, so $T \circ \varphi_T$ and $T \circ \varphi_{T^*}$ are irreducible representations of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ on $\ell^2(\mathbb{N})$. Moreover, irreducibility of the representation $\operatorname{id} \circ q^{\mathcal{K}} : p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}(\ell^2(\mathbb{N})) \xrightarrow{\operatorname{id}} B(\ell^2(\mathbb{N}))$ implies the kernel $\mathcal{I} = \ker \varphi_T \cap \ker \varphi_{T^*} \simeq q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$ of $\operatorname{id} \circ q^{\mathcal{K}}$ is a primitive ideal of $p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p \simeq \ker \varphi_T$. Similarly, \mathcal{I} is a primitive ideal of $\ker \varphi_{T^*} \simeq p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p$. Although $\mathcal{I} \not\in \operatorname{Prim} \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$, the ideal \mathcal{I} is essential in $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ by [7, Lemma 6.8], so the space $\operatorname{Prim} \mathcal{I} \simeq \operatorname{Prim} \mathbf{c}_0$ is dense in $\operatorname{Prim} \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$.

Next consider that $\mathcal{K}(\ell^2(\mathbb{N})) = \overline{\operatorname{span}}\{e_{ij} := T_i(1 - TT^*)T_j^* : i, j \in \mathbb{N}\}$, and recall that there is a natural isomorphism Λ of $\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c})) \simeq \mathcal{K}(\ell^2(\mathbb{N})) \otimes \mathbf{c}$ onto the algebra

$$C(\mathbb{N} \cup {\infty}, \mathcal{K}(\ell^2(\mathbb{N}))) := \{ f : \mathbb{N} \to \mathcal{K}(\ell^2(\mathbb{N})) : \lim f(n) \text{ exists in } \mathcal{K}(\ell^2(\mathbb{N})) \}$$

given by $\Lambda(e_{ij} \otimes 1_k)(n) = 1_k(n)e_{ij}$ for $i, j, k, n \in \mathbb{N}$. Then $\Lambda(p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p) \subset \mathcal{A}$ because

$$[\Lambda(p(e_{ij} \otimes 1_m)p)](n) = [\Lambda(e_{ij} \otimes 1_{m \vee i \vee j})](n)$$

$$= \begin{cases} e_{ij} & \text{if } n \geq m \vee i \vee j \\ 0 & \text{otherwise} \end{cases}$$

$$= \pi_n(f_{i,j}^m) = \pi_n^*(g_{i,j}^m).$$

Since $\Lambda = \pi \circ \Theta_* = \pi^* \circ \Theta$, Λ maps the corners $p\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}))p$ and $q\mathcal{K}(\ell^2(\mathbb{N}, \mathbf{c}_0))q$ isomorphically onto the algebra \mathcal{A} and \mathcal{A}_0 respectively. Construction of this isomorphism in [7, §6] involves the representations π_n and π_n^* , for each $n \in \mathbb{N}$, of $\mathbf{c} \times_T^{\mathrm{piso}} \mathbb{N}$ on $\ell^2(\mathbb{N})$ that are associated to the partial-isometric representations $k \mapsto P_n T_k P_n$ and $k \mapsto P_n T_k^* P_n$ respectively, where $P_n := 1 - T_{n+1} T_{n+1}^*$ is the projection onto $H_n := \mathrm{span}\{e_i : i = 0, 1, 2, \dots, n\}$. For every $a \in \ker \varphi_{T^*}$, the sequence $\{\pi_n(a)\}_{n \in \mathbb{N}}$ is convergent in $\mathcal{K}(\ell^2(\mathbb{N}))$, and then the map $a \in \ker \varphi_{T^*} \mapsto \pi(a) := \{\pi_n(a)\}_{n \in \mathbb{N}} \in \mathcal{A}$ defines the isomorphism.

These observations suggest that an extension of π should give a representation of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ in the algebra $C_{\mathrm{b}}(\mathbb{N}, B(\ell^2(\mathbb{N})))$, and then primitive ideals are the kernels of evaluation maps. But we can consider a smaller algebra which gives more information on the image of π . Note that the algebra $C(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N})))$ is too small to consider, because the sequence $(P_n T_k P_n)_{n \in \mathbb{N}}$ as we see, does not converge to T_k in the operator norm on $B(\ell^2(\mathbb{N}))$, but it converges strongly to T_k . Therefore we consider the set $C_{\mathrm{b}}(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N}))_{*-s})$ of functions $\xi : \mathbb{N} \to B(\ell^2(\mathbb{N}))$ such that $\lim_n \xi_n$ exists in the *-strong topology on $B(\ell^2(\mathbb{N}))$, and which satisfies $\|\xi\|_{\infty} := \sup_n \|\xi_n\| < \infty$. By [9, Lemma 2.56], it is a C^* -algebra with the pointwise operation from $B(\ell^2(\mathbb{N}))$ and the norm $\|\cdot\|_{\infty}$. Then let

$$\mathcal{B}:=\{f:\mathbb{N}\to B(\ell^2(\mathbb{N})): \sup_{n\in\mathbb{N}}\|f(n)\|_{B(\ell^2(\mathbb{N}))}<\infty,\ f(n)\in P_nB(\ell^2(\mathbb{N}))P_n \text{ and }$$

 $\lim_{n\to\infty} f(n) \text{ exists in the *-strong topology on } B(\ell^2(\mathbb{N})) \}.$

Note that \mathcal{B} is a subalgebra of $C_{\mathbf{b}}(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N}))_{*-s})$ because $P_n B(\ell^2(\mathbb{N})) P_n \simeq B(H_n)$ is closed in $B(\ell^2(\mathbb{N}))$ for every $n \in \mathbb{N}$, and \mathcal{B} has an identity $1_{\mathcal{B}} = (P_0, P_1, P_2, \ldots)$.

Proposition 5.5. There are faithful representations π and π^* of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ in the algebra \mathcal{B} , which defined on each generator $v_k \in \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ by

$$\pi(v_k)(n) := \pi_n(v_k) = P_n T_k P_n \text{ and } \pi^*(v_k)(n) := \pi_n^*(v_k) = P_n T_k^* P_n \text{ for } n \in \mathbb{N}.$$

These representations π and π^* are the extension of isomorphisms π : ker φ_{T^*} $\to \mathcal{A}$ and π^* : ker $\varphi_T \to \mathcal{A}$ of [7, Theorem 6.1].

Proof. The map π is induced by the partial-isometric representation $k \mapsto W_k$ where $W_k(n) = P_n T_k P_n$, and similarly for π^* by $k \mapsto S_k$ where $S_k(n) = P_n T_k^* P_n$ for $n \in \mathbb{N}$. These are unital representations: $\pi(1) = \pi(v_0) = (P_0, P_1, P_2, \ldots) = \pi^*(1)$.

By [7, Proposition 5.4], the representation π is faithful if and only if for any r > 0 and i < j in \mathbb{N} , we have $\xi_{i,j}^r \in \mathcal{B}$ for which

$$\xi_{i,j}^r := (\pi(1) - \pi(v_r)^* \pi(v_r)) (\pi(v_i) \pi(v_i)^* - \pi(v_j) \pi(v_j)^*)$$

is a nonzero element of \mathcal{B} . Let r > 0 and $i < j \in \mathbb{N}$, then we consider the three cases $0 < r \le i < j$, i < r < j and $i < j \le r$ separately. If $0 < r \le i < j$, then

$$\xi_{i,j}^{r}(i) = (P_i - \pi_i(v_r)^* \pi_i(v_r))(\pi_i(v_i) \pi_i(v_i)^* - \pi_i(v_j) \pi_i(v_j)^*)$$

$$= (P_i - P_i T_r^* P_i T_r P_i)(P_i T_i P_i T_i^* P_i - P_i T_j P_i T_j^* P_i)$$

$$= (P_i - P_i T_r^* T_r P_{i-r} P_i)(P_i T_i T_i^* P_i - 0)$$

$$= (P_i - P_{i-r})(P_i T_i T_i^* P_i)$$

and that $[\xi_{i,j}^r(i)](e_i) = (P_i - P_{i-r})(e_i) = e_i$. If $i < j \le r$, then similar computations show that $[\xi_{i,j}^r(i)](e_i) = [P_i(P_iT_iT_i^*P_i)](e_i) = e_i$, and for i < r < j we have $[\xi_{i,j}^r(r)](e_r) = (P_r - P_0)(e_r) = e_r$. Thus $\xi_{i,j}^r \ne 0$ in \mathcal{B} . The same outline of arguments is valid to show the representation π^* is also faithful. \square

So we have for every $n \in \mathbb{N}$ the representations $\pi_n = \varepsilon_n \circ \pi$ and $\pi_n^* = \varepsilon_n \circ \pi^*$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on H_n , where ε_n are the evaluation map of $C_{\mathrm{b}}(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N}))_{*-s})$. Hence they are irreducible, indeed every nonzero vector of the subspace H_n of $\ell^2(\mathbb{N})$ is cyclic for π_n^* : if $(h_0, h_1, \ldots, h_n) \in H_n$ with $h_j \neq 0$ for some j, then for every $i \in \{0, 1, 2, \ldots, n\}$, we have

$$(\pi_n^*(g_{i,j}^n))(h_0, h_1, \dots, h_n) = [T_i(1 - TT^*)T_j^*](h_0, h_1, \dots, h_n)$$

= $(0, \dots, h_j, \dots, 0)$, where h_j is in the *i*-th slot,

so $\pi_n^*(\frac{1}{h_j}g_{i,j}^n)(h) = e_i$, and therefore $H_n = \operatorname{span}\{\pi_n^*(\xi)h : \xi \in \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}\}$. Same arguments work for π_n .

Note for every $n \in \mathbb{N}$ that $\pi_n(f_{i,j}^m) = e_{ij} = \pi_n(g_{n-i,n-j}^k)$ for all $0 \le i, j, m, k \le n$, and similarly $\pi_n^*(g_{i,j}^m) = e_{ij} = \pi_n^*(f_{n-i,n-j}^k)$ for all $0 \le i, j, m, k \le n$

n. Thus every $f_{i,j}^m - g_{n-i,n-j}^k$ is contained in $\ker \pi_n$, and similarly $(g_{i,j}^m - f_{n-i,n-j}^k) \in \ker \pi_n^*$. We shall see many more elements of $\ker \pi_n$ as well as $\ker \pi_n^*$ in Proposition 5.7.

But now we recall that for $n \in \mathbb{N}$ the partial-isometric representation $J^n: \mathbb{N} \to B(H_n)$ in [7, §3] defined by $J_t^n(e_r) = \begin{cases} e_{t+r} & \text{if } r+t \in \{0,1,\ldots,n\} \\ 0 & \text{otherwise,} \end{cases}$ induces the representation $\pi_{J^n}^{\mathbb{N}} \times J^n$ of $(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}, v)$ on H_n . In fact $\pi_{J^n}^{\mathbb{N}} \times J^n = \mathbb{N}$

induces the representation $\pi_{J^n}^{\mathbb{N}} \times J^n$ of $(\mathbf{c} \times_{\tau}^{\text{piso}} \mathbb{N}, v)$ on H_n . In fact $\pi_{J^n}^{\mathbb{N}} \times J^n = \pi_n$, because for every $k \in \mathbb{N}$ we have $(\pi_{J^n}^{\mathbb{N}} \times J^n(v_k))(e_r) = J_k^n(e_r) = P_n T_k P_n(e_r)$ where $r \in \{0, 1, 2, \ldots, n\}$.

The ideal $\ker \oplus_{r=0}^n \pi_{Jr}^{\mathbb{N}} \times J^r$ appears in the structure of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ [7, Lemma 5.7]. To be more precise about it, we need some results in [7, §5] related to the system $(\mathbb{C}^{n+1}, \tau, \mathbb{N})$. The crossed product $\mathbb{C}^{n+1} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ is the universal C^* -algebra generated by a canonical partial-isometric representation w of \mathbb{N} such that $w_r = 0$ for $r \geq n+1$. Let $q_n : (\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}, v) \to (\mathbb{C}^{n+1} \times_{\tau}^{\operatorname{piso}} \mathbb{N}, w)$ be the homomorphism induced by $w : \mathbb{N} \to \mathbb{C}^{n+1} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$, and note that it is surjective. Then Lemma 5.7 of [7] shows that $\ker q_n = \ker(\oplus_{r=0}^n \pi_{Jr}^{\mathbb{N}} \times J^r) = \bigcap_{r=0}^n \ker(\pi_{J^r}^{\mathbb{N}} \times J^r)$. So by these arguments we obtain the following equation

(5.2)
$$\ker q_n = \bigcap_{r=0}^n \ker \pi_r \text{ for every } n \in \mathbb{N}.$$

Lemma 5.6. For $n \in \mathbb{N}$, let L_n be the ideal of $(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}, v)$ generated by $\{v_r : r \geq n+1\}$. Then $L_n = \ker q_n$, and it is isomorphic to

$$(5.3) \{\xi \in \pi(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}) \subset C_b(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N}))_{*-s}) : \xi \equiv 0 \text{ on } \{0, 1, 2, \dots, n\}\}.$$

Proof. We have $L_n \subset \ker q_n$ because $q_n(v_k) = 0$ for all $k \geq n+1$. To see $\ker q_n \subset L_n$, let ρ be a representation of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on H_{ρ} where $\ker \rho = L_n$. Since $\rho(v_t) = 0$ for every $t \geq n+1$, by the universal property of $\mathbb{C}^{n+1} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$, there exists a representation $\tilde{\rho}$ of $\mathbb{C}^{n+1} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on H_{ρ} which satisfies $\tilde{\rho} \circ q_n = \rho$. Thus $\ker q_n \subset \ker \rho = L_n$.

Next we show that $\pi(L_n)$ and (5.3) are equal. Let $r \geq n+1$, and consider $\pi(v_r)$ is the sequence $(P_iT_rP_i)_{i\in\mathbb{N}}$. If $0\leq i\leq n$, then $0\leq i+1\leq n+1\leq r$ and

$$P_i T_r P_i = (1 - T_{i+1} T_{i+1}^*) T_r P_i = (1 - T_{i+1} T_{i+1}^*) T_{i+1} T_{r-(i+1)} P_i = 0.$$

So $\pi(L_n)$ is a subset of (5.3). For the other inclusion, suppose $f \in \pi(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N})$ in which f(i) = 0 for all $0 \le i \le n$. Since $f = \pi(\xi)$ for some $\xi \in \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$, and $\pi(\xi)(i) = \pi_i(\xi) = f(i)$ for all $i \in \mathbb{N}$, we therefore have $\pi_i(\xi) = f(i) = 0$ for all $0 \le i \le n$. Thus $\xi \in \cap_{i=0}^n \ker \pi_i = \ker q_n$, and hence $f = \pi(\xi) \in \pi(L_n)$.

Let $\pi_{\infty} := \lim_{n} \pi_{n}$ and $\pi_{\infty}^{*} := \lim_{n} \pi_{n}^{*}$ where the limits are taken with respect to the strong topology of $B(\ell^{2}(\mathbb{N}))$. Then π_{∞} and π_{∞}^{*} are the irreducible representations $\varphi_{T} : v_{k} \mapsto T_{k}$ and $\varphi_{T^{*}} : v_{k} \mapsto T_{k}^{*}$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on $H_{\infty} := \ell^{2}(\mathbb{N})$. Thus by [7, Lemma 6.2] we have

$$\ker \pi_{\infty} = \ker \varphi_T = \overline{\operatorname{span}} \{ g_{i,j}^m := v_i^* v_m v_m^* (1 - v^* v) v_j : i, j, m \in \mathbb{N} \},$$

$$\ker \pi_{\infty}^* = \ker \varphi_{T^*} = \overline{\operatorname{span}} \{ f_{i,j}^m := v_i v_m^* v_m (1 - v v^*) v_j^* : i, j, m \in \mathbb{N} \}.$$

For $n \in \mathbb{N}$, let π_n and π_n^* be the irreducible representations of $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$ on the subspace H_n of $\ell^2(\mathbb{N})$, that are induced by the partial-isometric representations $k \mapsto P_n T_k P_n$ and $k \mapsto P_n T_k^* P_n$. Let L_n be the ideal of $(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}, v)$ generated by $\{v_r : r \geq n+1\}$. Then π_n is the representation

$$\varepsilon_n \circ \pi : \mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N} \xrightarrow{\pi} \mathcal{B} \subset C_{\operatorname{b}}(\mathbb{N} \cup \{\infty\}, B(\ell^2(\mathbb{N}))_{*-\operatorname{s}}) \xrightarrow{\varepsilon_n} B(H_n),$$

and similarly $\pi_n^* = \varepsilon_n \circ \pi^*$. So $\ker \pi_n \simeq \ker \varepsilon_n \simeq \ker \pi_n^*$.

Proposition 5.7. Let $n \in \mathbb{N}$. Then

- (a) $\ker \pi_n = \ker \pi_n^* \simeq \ker \varepsilon_n = \{ \xi \in \mathcal{B} : \xi(n) = 0 \};$
- (b) $\ker \pi_{\infty} \simeq \ker \pi_{\infty}^* = \{ \xi \in \mathcal{B} : *-strong \lim_n \xi(n) = 0 \};$

Furthermore,

- (c) $\ker \pi_n^* = \overline{\operatorname{span}} \{ g_{i,j}^m f_{n-i,n-j}^k + \eta : 0 \le i, j, m, k \le n, \ \eta \in L_n \},$ $\ker \pi_n = \overline{\operatorname{span}} \{ f_{i,j}^m g_{n-i,n-j}^k + \eta : 0 \le i, j, m, k \le n, \ \eta \in L_n \}, \ and$ $\ker \pi_n^* = \ker \pi_n \text{ for } n \in \mathbb{N}, \text{ in particular we have } \ker \pi_0 = \ker \pi_0^* = L_0;$ (d) $\ker \pi_n|_{\ker \varphi_{T^*}} = \overline{\operatorname{span}} \{ (f_{i,j}^m f_{i,j}^k) + f_{x,y}^z : 0 \le i, j, m, k \le n, \text{ one of } i \le i, j \le n, k \le n, \text{ one of } i \le i, j \le n, k \le n, \text{ one of } i \le i, j \le n, k \le n, \text{ one of } i \le i, j \le n, k \le n, k$
- (d) $\ker \pi_{n}|_{\ker \varphi_{T^{*}}} = \overline{\operatorname{span}}\{(f_{i,j}^{m} f_{i,j}^{k}) + f_{x,y}^{z} : 0 \leq i, j, m, k \leq n, \text{ one of } x, y, z \geq n+1\},$ $\ker \pi_{n}^{*}|_{\ker \varphi_{T}} = \overline{\operatorname{span}}\{(g_{i,j}^{m} g_{i,j}^{k}) + g_{x,y}^{z} : 0 \leq i, j, m, k \leq n, \text{ one of } x, y, z \geq n+1\},$ $\Theta_{*}^{-1}(\ker \pi_{n}|_{\ker \varphi_{T^{*}}}) = \Theta^{-1}(\ker \pi_{n}^{*}|_{\ker \varphi_{T}}), \text{ and } \ker \pi_{n}^{*}|_{\ker \varphi_{T}} \simeq \{\mathbf{a} \in \mathcal{A} : \mathbf{a}(n) = 0\} \simeq \ker \pi_{n}|_{\ker \varphi_{T^{*}}};$
- $\ker \pi_n^*|_{\ker \varphi_T^*}) = \emptyset \quad \text{(Act } n_n | \ker \varphi_T), \text{ with } \ker \pi_n^*|_{\ker \varphi_T^*};$ $\ker \pi_n^*|_{\ker \varphi_T} \simeq \{a \in \mathcal{A} : a(n) = 0\} \simeq \ker \pi_n|_{\ker \varphi_{T^*}};$ $(e) \ker \pi_n^*|_{\mathcal{I}} = \overline{\operatorname{span}}\{g_{i,j}^m g_{i,j}^{m+1} : 0 \leq i, j \leq m \text{ in } \mathbb{N}, \text{ and } m \neq n\} = \ker \pi_n|_{\mathcal{I}} = \overline{\operatorname{span}}\{f_{i,j}^m f_{i,j}^{m+1} : 0 \leq i, j \leq m \text{ in } \mathbb{N}, \text{ and } m \neq n\} \text{ is isomorphic to the ideal } \{a \in \mathcal{A}_0 : a(n) = 0\}.$

Remark 5.8. Note that the representations $\pi_n|_{\ker \varphi_{T^*}}$ and $\pi_n^*|_{\ker \varphi_T}$ are equivalent to the evaluation map $\varepsilon_n: f \in \mathcal{A} \mapsto f(n) \in B(H_n)$ of \mathcal{A} on H_n , so we have $\ker \pi_n|_{\ker \varphi_{T^*}} \simeq \ker \pi_n^*|_{\ker \varphi_T}$ is isomorphic to $\{f \in \mathcal{A}: f(n) = 0\}$, and $\ker \pi_n|_{\mathcal{I}} = \ker \pi_n^*|_{\mathcal{I}} \simeq \{f \in \mathcal{A}_0: f(n) = 0\}$; and $\ker \pi_\infty \simeq \ker \pi_\infty^* \simeq \mathcal{A}$.

Proof of Proposition 5.7. Fix $n \in \mathbb{N}$. We show for $\ker \pi_n$, and skip the proof for $\ker \pi_n^*$ because it contains the same arguments. We clarify firstly that the space

$$\mathcal{J} := \overline{\operatorname{span}} \{ f_{i,j}^m - g_{n-i,n-j}^k + \eta : 0 \le i, j, m, k \le n, \eta \in L_n \}$$

is an ideal of $(\mathbf{c} \times_{\tau} \mathbb{N}, v)$ by showing $v \mathcal{J} \subset \mathcal{J}$ and $v^* \mathcal{J} \subset \mathcal{J}$. Let i = n, then

$$\begin{aligned} vv_k v_k^* (1 - v^* v) v_{n-j} &= v(v^* v v_k v_k^*) (1 - v^* v) v_{n-j} \\ &= v v_k v_k^* v^* v (1 - v^* v) v_{n-j} \\ &= v_{k+1} v_{k+1}^* (v - v v^* v) v_{n-j} = 0, \end{aligned}$$

therefore $v(f_{n,j}^m-g_{0,n-j}^k+\eta)=vv_nv_m^*v_m(1-vv^*)v_j^*-vv_kv_k^*(1-v^*v)v_{n-j}+v\eta=f_{n+1,j}^m+v\eta$ belongs to $\mathcal J$ because $f_{n+1,j}^m\in L_n$. If $0\leq i\leq n-1$, then $1\leq i+1\leq n$

and $n - i \ge 1$, and we have

$$vv_{n-i}^*v_kv_k^* = vv^*v_{n-i-1}^*v_{n-i-1}v_{n-i-1}^*v_kv_k^*$$

$$= v_{n-i-1}^*v_{n-i-1}vv^*v_{n-i-1}^*v_kv_k^*$$

$$= v_{n-i-1}^*v_{n-i}v_{n-i}^*v_kv_k^*$$

$$= v_{n-i-1}^*v_{\max\{n-i,k\}}v_{\max\{n-i,k\}}^*,$$

so $v(f_{i,j}^m - g_{n-i,n-j}^k + \eta) = f_{i+1,j}^m - g_{n-(i+1),n-j}^{\max\{n-i,k\}} + v\eta \in \mathcal{J}.$ Now we check for $v^*\mathcal{J}$, and assume i=0, then

$$v^*[f_{0,j}^m - g_{n,n-j}^k + \eta] = v^*[v_m^* v_m (1 - vv^*) v_j^* - v_n^* v_k v_k^* (1 - v^*v) v_{n-j} + \eta]$$
$$= 0 - g_{n+1,n-j}^k + v^* \eta \in \mathcal{J}$$

because $g_{n+1,n-j}^k \in L_n$. It follows by similar computations for $1 \le i \le n$ that

$$v^*[f_{i,j}^m - g_{n-i,n-j}^k + \eta] = f_{i-1,j}^{\max\{i,m\}} - g_{n-(i-1),n-j}^k + v^*\eta \in \mathcal{J}.$$

Next we show that $\mathcal{J}=\ker\pi_n$, one inclusion $\mathcal{J}\subset\ker\pi_n$ is clear because $\pi_n(f_{i,j}^m)=\pi_n(g_{n-i,n-j}^k)=T_i(1-TT^*)T_j^*$ and $L_n\subset\ker\pi_n$. For the other inclusion, let $\sigma:\mathbf{c}\times\tau_{n}^{\mathrm{piso}}\mathbb{N}\to B(H_\sigma)$ be a nondegenerate representation with $\ker\sigma=\mathcal{J}.$ Note that $B(H_n)=\mathrm{span}\{e_{ij}:=T_i(1-TT^*)T_j^*:0\leq i,j\leq n\}.$ Since $\{f_{i,j}^n:0\leq i,j\leq n\}$ is a matrix-units for $B(H_\sigma)$, there is a homomorphism ψ of $B(H_n)$ into $B(H_\sigma)$ which satisfies $e_{ij}\mapsto\sigma(f_{i,j}^n).$ Therefore $\sigma=\psi\circ\pi_n$, and hence $\ker\pi_n\subset\ker\sigma=\mathcal{J}.$

Using the spanning elements of $\ker \pi_n$ and $\ker \pi_n^*$, and the equation $f_{i,j}^m - g_{n-i,n-j}^k = -(g_{n-i,n-j}^k - f_{n-(n-i),n-(n-j)}^m)$, we see that they contain each other, therefore $\ker \pi_n = \ker \pi_n^*$ for every $n \in \mathbb{N}$. The ideal L_0 is $\ker \pi_0 = \ker \pi_0^*$ because $f_{0,0}^0 - g_{0,0}^0 = v^*v - vv^* \in L_0$.

For (d), let now \mathcal{J} be $\overline{\text{span}}\{(f_{i,j}^m - f_{i,j}^k) + f_{x,y}^z : 0 \leq i, j, m, k \leq n, \text{ one of } x, y, z \geq n+1\}$. Then the same idea of calculations shows that \mathcal{J} is an ideal of $\ker \varphi_{T^*}$, and it is contained in $\ker \pi_n|_{\ker \varphi_{T^*}}$, then for the other inclusion let σ be a nondegenerate representation of $\ker \varphi_{T^*}$ such that $\ker \sigma = \mathcal{J}$, get the homomorphism $\psi : B(H_n) \to B(H_\sigma)$ defined by $\psi(e_{ij}) = \sigma(f_{i,j}^n)$, and hence the equation $\psi \circ \pi_n = \sigma$ implies that $\ker \pi_n|_{\ker \varphi_{T^*}} = \mathcal{J}$. By computations on the spanning elements we see that the equation $\Theta_*^{-1}(\ker \pi_n|_{\ker \varphi_{T^*}}) = \Theta^{-1}(\ker \pi_n^*|_{\ker \varphi_{T^*}})$ is hold. The same arguments work for the proof of (e), and we skip this.

Remark 5.9. The map $n \in \mathbb{N} \cup \{\infty\} \mapsto I_n := \ker \pi_n^* \in \operatorname{Prim}(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N})$ parameterizes the open subset $\{P \in \operatorname{Prim}(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}) : \ker \varphi_T \simeq \mathcal{A} \not\subset P\}$ of $\operatorname{Prim}(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N})$ homeomorphic to $\operatorname{Prim} \mathcal{A}$. Note that the ∞ corresponds to the ideal $\ker \pi_{\infty}^* = \ker \varphi_{T^*} \in \operatorname{Prim}(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N})$, and it corresponds to $\mathcal{I} = \ker \varphi_{T^*}|_{\ker \varphi_T} \in \operatorname{Prim} \mathcal{A}$.

Lemma 5.10. (i)
$$\bigcap_{n=0}^{m} I_n = L_m$$
 for every $m \in \mathbb{N}$; (ii) $\bigcap_{n \in \mathbb{N}} I_n = \{0\}$;

(iii)
$$\{0\} \subsetneq (\bigcap_{n>m} I_n) \subset \ker \pi_{\infty}^* \cap \ker \pi_{\infty} \text{ for every } m \in \mathbb{N}.$$

Proof. Part (i) follows from (5.2) and Lemma 5.6. For (ii), note that q_{∞} is the identity map on $\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}$, and that $\bigoplus_{i \in \mathbb{N}} \pi_i = (\bigoplus_{i \in \mathbb{N}} (\pi_{J^i}^{\mathbb{N}} \times J^i)) \circ \operatorname{id}$. So $\bigcap_{n \in \mathbb{N}} I_n = \{0\}$ by faithfulness of $\bigoplus_{i \in \mathbb{N}} (\pi_{J^i}^{\mathbb{N}} \times J^i)$ [7, Corollary 5.5].

The inclusion $\bigcap_{n>m} I_n \subset \ker \pi_{\infty}^*$ for every $m \in \mathbb{N}$ follows from the next arguments:

$$\bigcap_{n>m} \ker(\pi_n^*|_{\ker \pi_\infty}) \simeq \{ f \in \mathcal{A} : f(n) = 0 \,\,\forall \,\, n > m \}$$

$$\subset \{ f \in A : \lim_{n \to \infty} f(n) = 0 \}$$

$$= \mathcal{A}_0 \simeq \ker \pi_\infty^*|_{\ker \pi_\infty} \subset \ker \pi_\infty^* \in \operatorname{Prim} \mathbf{c} \times_\tau^{\operatorname{piso}} \mathbb{N},$$

so the two ideals $J:=\bigcap_{n>m}I_n$ and $L:=\ker\pi_\infty$ of $\mathbf{c}\times_\tau^\mathrm{piso}\mathbb{N}$ satisfy $J\cap L\subset\ker\pi_\infty^*$, therefore either $J\subset\ker\pi_\infty^*$ or $L\subset\ker\pi_\infty^*$, but the latter is not possible. To show $J\subset\ker\pi_\infty$, since $\ker\pi_n=\ker\pi_n^*$ for each n, we act similarly using the fact that

$$\bigcap_{n>m} \ker(\pi_n|_{\ker \pi_\infty^*}) \simeq \{ f \in \mathcal{A} : f(n) = 0 \,\,\forall \,\, n>m \} \subset \ker \pi_\infty \in \operatorname{Prim} \mathbf{c} \times_\tau^{\operatorname{piso}} \mathbb{N}.$$

Therefore, $J \subset \ker \pi_{\infty}^* \cap \ker \pi_{\infty}$. Moreover, since $g_{0,0}^0 - g_{0,0}^1 \neq 0$ which satisfies $\pi_n^*(g_{0,0}^0 - g_{0,0}^1) = 0$ for all $n \geq 1$, it follows that $\{0\} \subsetneq (\bigcap_{n > m} I_n)$. \square

Remark 5.11. Part (ii) of Lemma 5.10 confirms with the fact that \mathcal{I} is an essential ideal of $\mathbf{c} \times_{\tau}^{\text{piso}} \mathbb{N}$ [7, Lemma 6.8].

Next consider for $z \in \mathbb{T}$, the character $\gamma_z \in \mathbb{Z} \simeq \mathbb{T}$ defined by $\gamma_z : m \mapsto \overline{z}^m$. Note that the map $\gamma_z : k \in \mathbb{N} \mapsto \gamma_z(k)$ is a partial-isometric representation of \mathbb{N} in $\mathbb{C} \simeq B(\mathbb{C})$. Consequently for each $z \in \mathbb{T}$, we have a representation $\pi_{\gamma_z} \times \gamma_z$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on \mathbb{C} such that $\pi_{\gamma_z} \times \gamma_z(v_k) = \gamma_z(k) = \overline{z}^k$ for $k \in \mathbb{N}$, and it is irreducible. Moreover we know that the homomorphism $\Psi : \mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N} \to C(\mathbb{T})$ is the composition of the Fourier transform $\mathbb{C} \times_{\mathrm{id}} \mathbb{Z} \simeq C^*(\mathbb{Z}) \simeq C(\mathbb{T})$ with $\ell \times \delta^* : \mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N} \to \mathbb{C} \times_{\mathrm{id}} \mathbb{Z}$, in which $\ell : (x_n) \in \mathbf{c} \mapsto \lim_n x_n \in \mathbb{C}$ and δ is the unitary representation of \mathbb{Z} on $\mathbb{C} \times_{\mathrm{id}} \mathbb{Z}$.

Lemma 5.12. For $z \in \mathbb{T}$, the character $\gamma_z : k \mapsto \overline{z}^k$ in $\hat{\mathbb{Z}} \simeq \mathbb{T}$ gives an irreducible representation $\pi_{\gamma_z} \times \gamma_z$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on \mathbb{C} such that $\pi_{\gamma_z} \times \gamma_z = \varepsilon_z \circ (\ell \times \delta^*)$. Denote by J_z the primitive ideal $\ker \pi_{\gamma_z} \times \gamma_z$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$. Then $\ker \pi_{\infty}$ and $\ker \pi_{\infty}^*$ are contained in J_z for every $z \in \mathbb{T}$. Moreover every ideal I_n for $n \in \mathbb{N}$ is not contained in any J_z .

Proof. By using the Fourier transform we can view $\mathbb{C} \times_{\mathrm{id}} \mathbb{Z} \simeq C^*(\mathbb{Z})$ as $C(\mathbb{T})$, and it follows that $v_k \in \mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ is mapped into the function $\iota_k : t \mapsto \overline{t}^k \in C(\mathbb{T})$.

We know that primitive ideals of $C(\mathbb{T})$ are given by the kernels of evaluation maps $\varepsilon_t(f) = f(t)$ for $t \in \mathbb{T}$, and the character γ_z is a partial-isometric representation of \mathbb{N} in \mathbb{C} for $z \in \mathbb{T}$. Then by inspection on the generators, we see

that the representation $\pi_{\gamma_z} \times \gamma_z$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ on \mathbb{C} satisfies $\pi_{\gamma_z} \times \gamma_z = \varepsilon_z \circ (\ell \times \delta^*)$. So the primitive ideal $J_z := \ker \pi_{\gamma_z} \times \gamma_z$ of $\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N}$ is lifted from the quotient $(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N})/J \simeq C(\mathbb{T}).$

Since $\pi_{\gamma_z} \times \gamma_z(f_{i,j}^m) = 0 = \pi_{\gamma_z} \times \gamma_z(g_{i,j}^m)$, $\ker \pi_{\infty} = \ker \varphi_T$ and $\ker \pi_{\infty}^* = \ker \varphi_{T^*}$ are contained in J_z for every $z \in \mathbb{T}$. Finally, since $\pi_{\gamma_z} \times \gamma_z(v_{n+1}) = \ker \varphi_{T^*}$ $\overline{z}^{n+1} \neq 0$ for $n \in \mathbb{N}$, $I_n \not\subset J_z$ for any $z \in \mathbb{T}$.

Theorem 5.13. The maps $n \in \mathbb{N} \cup \{\infty\} \cup \{\infty^*\} \mapsto I_n \text{ and } z \in \mathbb{T} \mapsto J_z \text{ combine}$ to give a bijection of the disjoint union $\mathbb{N} \cup \{\infty\} \cup \{\infty^*\} \cup \mathbb{T}$ onto $\mathrm{Prim}(\mathbf{c} \times_{\tau}^{\mathrm{piso}} \mathbb{N})$, where $I_{\infty^*} := \ker \varphi_T$. Then the hull-kernel closure of a nonempty subset F of

$$\mathbb{N} \cup \{\infty\} \cup \{\infty^*\} \cup \mathbb{T}$$

is given by

- (a) the usual closure of F in \mathbb{T} if $F \subset \mathbb{T}$;
- (b) F if F is a finite subset of \mathbb{N} ;
- (c) $F \cup \mathbb{T}$ if $F \subset (\{\infty\} \cup \{\infty^*\})$;
- (d) $F \cup (\{\infty\} \cup \{\infty^*\} \cup \mathbb{T})$ if $F \neq \mathbb{N}$ is an infinite subset of \mathbb{N} ;
- (e) $\mathbb{N} \cup \{\infty\} \cup \{\infty^*\} \cup \mathbb{T}$ if $\mathbb{N} \subseteq F$.

Proof. The diagram 5.1 together with Proposition 5.7 gives a bijection map of $\mathbb{N} \cup \{\infty\} \cup \{\infty^*\} \cup \mathbb{T} \text{ onto } \operatorname{Prim}(\mathbf{c} \times_{\tau}^{\operatorname{piso}} \mathbb{N}).$

Lemma 5.10(ii) gives the closure of the subset F in (e), and Lemma 5.10(iii)gives the closure of the subset F in (d). If $F \subset (\{\infty\} \cup \{\infty^*\})$, then $\overline{F} = F \cup \mathbb{T}$ because $\ker \pi_{\infty}^*$, $\ker \pi_{\infty} \subset J_z$ for every $z \in \mathbb{T}$ by Lemma 5.12.

To see that $\overline{F} = F$ for a finite subset $F = \{n_1, n_2, \dots, n_j\}$ of \mathbb{N} , we note that if an ideal $P \in \text{Prim}(\mathbf{c} \times_{\tau} \mathbb{N})$ satisfies $\bigcap_{i=1}^{j} I_{n_i} \subset P$, then

- $P \neq J_z$ for any $z \in \mathbb{T}$ because $v_{n_j+1} \in \bigcap_{i=1}^j I_{n_i}$ but $v_{n_j+1} \notin J_z$;
- $P \neq I_{\infty}, I_{\infty^*}$ because $v_{n_j+1} \in \bigcap_{i=1}^{j} I_{n_i}$ but $v_{n_j+1} \notin I_{\infty}, I_{\infty^*}$; $P \neq I_n$ for $n \notin F$ because $(g_{0,0}^n g_{0,0}^{n+1}) \in \bigcap_{i=1}^{j} I_{n_i}$ but $(g_{0,0}^n g_{0,0}^{n+1}) \notin I_{\infty}$ I_n for $n \notin F$.

So it can only be $P = I_j$ for some $j \in F$. Finally the usual closure of F in T is followed by the fact that the map $z \mapsto J_z$ is a homeomorphism of \mathbb{T} onto the closed set $Prim C(\mathbb{T})$.

References

- [1] S. Adji, Invariant ideals of crossed products by semigroups of endomorphisms, Proc. Conference in Functional Analysis and Global Analysis in Manila, 1–8, October 1996, Springer, Singapore 1996.
- [2] S. Adji and A. Hosseini, The Partial-Isometric Crossed Products of \mathbf{c}_0 by the Forward and the Backward Shifts, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 487-498.
- [3] S. Adji, M. Laca, M. Nilsen, and I. Raeburn, Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1133-1141.
- [4] S. Adji and S. Zahmatkesh, Partial-isometric crossed products by semigroups of endomorphisms as full corners, J. Aust. Math. Soc. 96 (2014), no. 2, 145-166.

- [5] N. J. Fowler, P. Muhly, and I. Raeburn, Representations of Cuntz-Pimsner Algebras, Indiana Univ. Math. J. 52 (2003), no. 3, 569–605.
- [6] B. K. Kwaśniewski and A. V. Lebedev, Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras, J. Funct. Anal. 264 (2013), no. 8, 1806– 1847.
- [7] J. Lindiarni and I. Raeburn, Partial-isometric crossed products by semigroups of endomorphisms, J. Operator Theory 52 (2004), no. 1, 61–87.
- [8] G. J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), no. 2, 303–326.
- [9] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C^* -Algebras, Mathematical Surveys and Monographs, Vol. 60, American Mathematical Society, Providence, RI, 1998.

SRIWULAN ADJI JI ALAM NIRWANA 32 A GRAHA NIRWANA RESOR DAGO PAKAR BANDUNG 40191, INDONESIA

 $E ext{-}mail\ address: sriwulan.adji@gmail.com}$

SAEID ZAHMATKESH
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
FACULTY OF SCIENCE
CHULALONGKORN UNIVERSITY
BANGKOK 10330, THAILAND
E-mail address: zahmatkesh.s@gmail.com