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THE COMPOSITION SERIES OF IDEALS OF THE
PARTIAL-ISOMETRIC CROSSED PRODUCT BY
SEMIGROUP OF ENDOMORPHISMS

SRIWULAN ADJI AND SAEID ZAHMATKESH

ABSTRACT. Let I't be the positive cone in a totally ordered abelian group
I, and « an action of I't' by extendible endomorphisms of a C*-algebra
A. Suppose I is an extendible a-invariant ideal of A. We prove that the
partial-isometric crossed product Z := T Xgiso T't embeds naturally as an
ideal of A Xgiso T'T, such that the quotient is the partial-isometric crossed
product of the quotient algebra. We claim that this ideal Z together with
the kernel of a natural homomorphism ¢ : A Xgiso 't — A xisoT+ gives
a composition series of ideals of A xB!*° I't studied by Lindiarni and
Raeburn.

1. Introduction

Let (A,T'", ) be a dynamical system consisting of the positive cone 't in
a totally ordered abelian group I', and an action o : I'" — End A of I'" by
extendible endomorphisms of a C*-algebra A. A covariant representation of
the system (A,T'", ) is defined for which the semigroup of endomorphisms
{as : s € T} are implemented by partial isometries, and then the associ-
ated partial-isometric crossed product C*-algebra A xPis° 't generated by a
universal covariant representation, is characterized by the property that its
nondegenerate representations are in a bijective correspondence with covariant
representations of the system. This generalizes the covariant isometric repre-
sentation theory: the theory that uses isometries to represent the semigroup
of endomorphisms in a covariant representation of the system. We denoted by
A x5 T+ for the corresponding isometric crossed product.

Suppose I is an extendible a-invariant ideal of A, then a + I — ay(a) + I
defines an action of I'* by extendible endomorphisms of the quotient algebra
A/I. Tt is well-known that the isometric crossed product I x$°T'F sits naturally
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as an ideal in A x1° T't such that (A x5 TF) /(I x$°T+) ~ A/T xB° T+, We
show that this result is valid for the partial-isometric crossed product.
Moreover if ¢ : A xPs0T'H — A x15° '+ ig the natural homomorphism given
by the canonical universal covariant isometric representation of (A,T'", ) in
A xI° TF then ker ¢ together with the ideal I xP!° I't give a composition
series of ideals of A xP*° 't from which we recover the structure theorems of
[7]. Let us now consider the framework of [7]. A system that consists of the
C*-subalgebra A := Br+ of £°(I'") spanned by the functions 1, satisfying

1 ift>s
1s(t):{0 .

otherwise,

and the action 7 : 't — End Br+ given by the translation on ¢>(I'"). We
choose an extendible 7-invariant ideal I to be the subalgebra Br+ ., spanned
by {1, — 1, : 2 <y € I'*}. Then the composition series of ideals of Bp+ xPis
I't, that is given by the two ideals ker ¢ and Br+ o, xP° I't, produces the
large commutative diagram in [7, Theorem 5.6]. This result shows that the
commutative diagram in [7, Theorem 5.6] exists for any totally ordered abelian
subgroup (not only for subgroups of R), and that we understand clearly where
the diagram comes from.

Next, if we consider a specific semigroup I'"™ such as the additive semigroup
N in the group of integers Z, then the large commutative diagram gives a
clearer information about the ideals structure of ¢ xP*°N. We can identify that
the left-hand and top exact sequences in diagram [7, Theorem 5.6] are indeed
equivalent to the extension of the algebra K(¢2(N, cg)) of compact operators on
the Hilbert module ¢?(N, cg) by K(¢?(N)) provided by the algebra K(¢%(N, ¢)) of
compact operators on £2(N, c). Moreover it is known that Prim K(¢2(N,c)) ~
Prim(K(¢?(N)) ® ¢) ~ Primc is homeomorphic to N U co. Together with a
knowledge about the primitive ideal space of the Toeplitz C*-algebra generated
by the unilateral shift, our theorem on the composition series of ideals of ¢ xPis
N provides a complete description of the topology on the primitive ideal space
of ¢ xPI° N.

We begin with a section containing background material about the partial-
isometric crossed product by semigroups of extendible endomorphisms. In Sec-
tion 3, we prove the existence of a short exact sequence of partial-isometric
crossed products, which generalizes [2, Theorem 2.2] of the semigroup N. Then
we consider this and the other natural exact sequence described earlier in [4],
to get the composition series of ideals in A xPiso '+,

We proceed to Section 4 by applying our results in Section 3 to the dis-
tinguished system (Br+,I'",7) and the extendible T-invariant ideal Br+ ., of
Br+. It can be seen from our Proposition 4.1 that the large commutative dia-
gram of [7, Theorem 5.6] remains valid for any subgroup I" of a totally ordered
abelian group. Finally in the last section we describe the topology of primitive
ideal space of ¢ xP° N by using this large diagram.
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2. Preliminaries

A bounded operator V on a Hilbert space H is called an isometry if ||V (k)| =
||| for all h € H, which is equivalent to V*V = 1. A bounded operator V on a
Hilbert space H is called a partial isometry if it is isometry on (ker V))*. This
is equivalent to VV*V = V. If V is a partial isometry, then so is the adjoint
V*, where as for an isometry V, the adjoint V* may not be an isometry unless
V is unitary. Associated to a partial isometry V', there are two orthogonal
projections V*V and VV* on the initial space (ker V)* and on the range VH
respectively. In a C*-algebra A, an element v € A is called an isometry if
v*v =1 and a partial isometry if vvo*v = v.

An isometric representation of I'T on a Hilbert space H is amap S : '™ —
B(H) which satisfies S, := S(z) is an isometry, and S+, = 5,5, for all
z,y € I'*. So an isometric representation of N is determined by a single
isometry Si. Similarly a partial-isometric representation of I't on a Hilbert
space H is a map V : 't — B(H) which satisfies V,, := V(x) is a partial
isometry, and Vi, = V.V, for all z,y € I't. Note that the product VW
of two partial isometries V and W is a partial isometry precisely when V*V
commutes with WW* [7, Proposition 2.1]. Thus a partial isometry V is called
a power partial isometry if V™ is a partial isometry for every n € N, so a
partial-isometric representation of N is determined by a single power partial
isometry V;. If V is a partial-isometric representation of I't, then every V, V*
commutes with V;V*, and so does V'V, with V,*V;.

Now we consider a dynamical system (A, ", «) consisting of a C*-algebra
A, an action o of I'" by endomorphisms of A such that oy = id. Because we
deal with non unital C*-algebras and non unital endomorphisms, we require
every endomorphism «, to be extendible to a strictly continuous endomorphism
@, on the multiplier algebra M(A) of A. This happens precisely when there
exists an approximate identity (ay) in A and a projection p,, € M(A) such
that a,(ay) converges strictly to p,, in M(A).

Definition 2.1. A covariant isometric representation of (A,I'", ) on a Hilbert
space H is a pair (7, S) of a nondegenerate representation 7 : A — B(H) and
an isometric representation of S : 't — B(H) such that m(ay(a)) = Sy7(a)S:
foralla€ Aand x € T'T.

An isometric crossed product of (A,TF, ) is a triple (B, ja, jr+) consisting
of a C*-algebra B, a canonical covariant isometric representation (ja, jr+) in
M (B) which satisfies the following:

(i) for every covariant isometric representation (m,S) of (A, T, ) on a
Hilbert space H, there exists a nondegenerate representation m x S :
B — B(H) such that (m X S)oja =7 and (7 x S) o jp+ = S; and
(ii) B is generated by ja(A) U jp+(I'"), we actually have

B =span{jr+(2)"ja(a)jr+(y) 12,y €TF, a € A},
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Note that a given system (A,T", ) could have a covariant isometric repre-
sentation (7, S) only with 7 = 0. In this case the isometric crossed product
yields no information about the system. If a system admits a non trivial co-
variant representation, then the isometric crossed product does exist, and it is
unique up to isomorphism: if there is such a covariant isometric representation
(ta,tr+) of (A, TF ) in a C*-algebra C, then there is an isomorphism of C
onto B which takes (t4, tp+) into (ja, jr+). Thus we write the isometric crossed
product B as A x$° T't.

The partial-isometric crossed product of (A,T'",«) is defined in a similar
fashion involving partial-isometries instead of isometries.

Definition 2.2. A covariant partial-isometric representation of (A, Tt a) on
a Hilbert space H is a pair (m,S) of a nondegenerate representation 7 : A —
B(H) and a partial-isometric representation S : 't — B(H) of 't such that
m(az(a)) = Sym(a)S: for all a € A and z € T'". See in Remark 2.3 that this
equation implies SiS,7(a) = m(a)SkS, for a € A and x € T'". Moreover, [7,
Lemma 4.2] shows that every (m,S) extends to a partial-isometric covariant
representation (7, S) of (M(A),I'", @), and the partial-isometric covariance is
equivalent to m(ay(a))S, = Sym(a) and S, Sk = T(@,(1)) fora € Aandx € T'T.

A partial-isometric crossed product of (A, T+ «) is a triple (B, ja, jr+) con-
sisting of a C*-algebra B, a canonical covariant partial-isometric representation
(ja,jr+) in M(B) which satisfies the following:

(i) for every covariant partial-isometric representation (m, S) of (4,T'", )
on a Hilbert space H, there exists a nondegenerate representation
mxS:B— B(H) such that (7 x S)ojs =7 and (7 x §) o jr+ = S;
and

(ii) B is generated by ja(A) U jp+(I'"), we actually have

B= Spa'n{jl—‘+ (x)*jA(a)jF+ (y) HEPR TS F+a ac A}

Unlike the theory of isometric crossed product: every system (A, ", ) admits
a non trivial covariant partial-isometric representation (m,.S) with 7 faithful
[7, Example 4.6]. In fact [7, Proposition 4.7] shows that a canonical covariant
partial-isometric representation (ja,jr+) of (A, T, a) exists in the Toeplitz
algebra Tx associated to a discrete product system X of Hilbert bimodules over
I'", which (i) and (ii) are fulfilled, and it is universal: if there is such a covariant
partial-isometric representation (t4,tr+) of (4,I'" ) in a C*-algebra C that
satisfies (i) and (ii), then there is an isomorphism of C' onto B which takes
(ta,tr+) into (ja,jr+). Thus we write the partial-isometric crossed product B
as A xPiso T+,

Remark 2.3. Our special thanks go to B. Kwasdniewski for showing us the proof
arguments in this remark. Assuming (7, S) is covariant, then by C*-norm
equation we have ||7(a)S% — Skm(az(a))|| = 0, therefore 7(a)S}: = Sin(ay(a))
for all @ € A and z € ', which means that S,7(a) = m(ay(a))S, for all
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a € Aand z € T'". So S:S,7m(a) = Sim(a,(a))S: = (m(az(a*))S,)*S, =
(Sem(a*))*S, = 7(a)SES,.

More details on the proof are available in [6, Lemma 1.2].

3. The short exact sequence of partial-isometric crossed products

Theorem 3.1. Suppose that (AxPS°T'T i4, V) is the partial-isometric crossed
product of a dynamical system (A,T'T,a), and I is an extendible a-invariant
ideal of A. Then there is a short exact sequence

I POt — AXPSOTT — A/] <P — 0,

3.1) 0

where 11 is an isomorphism of I xP° T'F onto the ideal
D :=span{V)ia(i)V,:i €I, x,y € T} of AxPsoDT,
Ifq: A — A/I is the quotient map, ir, W denote the maps I — ngisol"‘_", W
It — M(I x25°T), and similarly foria U the maps AJT — AJ/T x2°°T'+,
't — M(A/I xE®°TT), then
poir=ialr, moW =V —and ~yois=igioq, FoV =U.

Proof. We make some minor adjustment to the proof of [1, Theorem 3.1] for
partial isometries. First, we check that D is indeed an ideal of A xP*°T'*. Let
& =V2ia(i)V, € D. Then V¢ is trivially contained in D, and computations
below show that i4(a)¢ and V¢ are all in D for a € A and s € '

ia(a)€ =ia(a)V;ia(i)Vy = (Vaia(a®)) ia(i)Vy
= (ia(aa(a))Ve) ia(i)Vy = Viia(aw(a)i)Vy;
Vit = ViVEia()Vy = Vi (VIVVEVOVSia(0)Vy
=V VoV Vyia(i)Vy, w:=max{s,z}
= (VaVIVy_ ) (Vua Va V)ia () Vy = Vi ((Vu Vi Vu Vi ) (V-1 (i) Vy

=V VuViFia(u—z () Vuea Vg = Vi gia (@ (1) )ia(u—z(8)) Vi gty -
This ideal D gives us a nondegenerate homomorphism 1 : A xPis° 't —
M (D) which satisfies 1(§)d = &d for € € A xE° Tt and d € D. Let j; :

T4 Axpsor+ 25 M(D), and S : T+ 5 M(A =P T+) -5 M(D). We

use extendibility of ideal I to show j; is nondegenerate. Take an approximate
identity (ey) for I, and let ¢ : A — M(I) be the homomorphism satisfying
o(a)i = ai for a € A and ¢ € I. Then ia(as(ex)i) converges in norm to

ia(@(@s(1ar(ay))i). However

ia(@(@s(Lara)))i) = ia(@s(Lar(a)))ia(i) = VaViia(i).
So ia(as(ex)i) converges in norm to VoV7¥ia(i). Since jr(ex)V3ia(i)Vi =
VZ¥ia(as(ex)i)Vi by covariance, it follows that jr(ex)VZia(i)V; converges in
norm to Vi (i)V;. We can similarly show that V*ia(i)V;jr(ex) converges in
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norm to Vi (i)Vi. Thus jr(ex) — lagpy strictly, and hence jr is nondegen-
erate.

We claim that the triple (D, jr,.S) is a partial-isometric crossed product of
(I,T*, «). A routine computations show the covariance of (j;,S) for (I,T'", a).
Suppose now (,T) is a covariant representation of (I, T+, ) on a Hilbert space
H. Let p: A %5 M(I) = B(H). Then by extendibility of ideal I, that is
a_|[ o = poa, the pair (p,T) is a covariant representation of (A,T'", ). The
restriction (p x T)|p to D of p x T is a nondegenerate representation of D
which satisfies the requirement (p x T')|poj; = 7w and (p X T)|poS =T. Thus
the triple (D, j7,5) is a partial-isometric crossed product for (I,I'", a), and we
have the homomorphism p =ia|; X V.

Next we show the exactness. Let ® be a nondegenerate representation of
A xgiS°F+ with kernel D. Since I C ker ®oi 4, we can have a representation ® of
A/I, which together with ®oV is a covariant partial-isometric representation of
(A/I,T*,&). Then ® x (Do V) lifts to ®, and therefore kery C ker® = D. [

Corollary 3.2. Let (A,T'",a) be a dynamical system, and I an extendible
a-invariant ideal of A. Then there is a commutative diagram:

0 0 0
| L,

0 —> kergy —— I xPOT+ —— [ xisoP+ ——
l Ml Misol

0 —> kergpy —— A xPiso P+ 2, g xioT+
Yy iso
l l a1 i l
0 —> kergay; —> A/I xPT+H =5 A/ x0T+ —
0

0 0

Proof. The three row exact sequences follow from [4], the middle column from
Theorem 3.1 and the right column exact sequence from [1]. By inspection on
the spanning elements, one can see that u(ker ¢;) is an ideal of ker ¢4 and
1 0 ¢ = ¢4 o u, thus first and second rows commute. Then Snake Lemma
gives the commutativity of all rows and columns. (]

4. The example

We consider a dynamical system (Bp+,I'V,7) consisting of a unital C*-
subalgebra Br+ of £°(I'") spanned by the set {15 : s € I'"} of characteristic
functions 15 of {z € T'" : x > s}, the action 7 of I'" on Bp+ is given by
Te(1s) = lsgaz. The ideal Br+ o, =5pan{l; —1;:i < j € I'"} is an extendible
T-invariant ideal of Br+. Then we want to show in Proposition 4.1 that an
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application of Corollary 3.2 to the system (Br+,I'",7) and the ideal Br+
gives [7, Theorem 5.6].

The crossed product B+ x'5°T'F is a universal C*-algebra generated by the
canonical isometric representation t of I'": every isometric representation w of
't gives a covariant isometric representation (m,,w) of (Br+, ", 7). Suppose
{ez : © € T'T} is the usual orthonormal basis in £2(T'"), and let Ts(e;) = x5
for every s € I'". Then s — T} is an isometric representation of I't, and the
Toeplitz algebra 7 (I') is the C*-subalgebra of B(¢2(I'")) generated by {7 :
s € I'T}. So there exists a representation T := w7 x T of Br+ x5°T'F on ¢2(I'T)
such that T(t,) = T and %(1,) = T,T; for all € T't. This representation
is faithful by [3, Theorem 2.4]. Thus Bp+ x5 T't and the Toeplitz algebra
T(T') = 77 x T(Br+ x!°T'") are isomorphic, and the isomorphism takes the
ideal Br+ o, x5°T'F of Bp+ x°T'* onto the commutator ideal Cr = span{7}(1—
TT*)T,; :x,y € T} of T(T).

Similarly, the crossed product Br+ xP° I't has a partial-isometric version
of universal property by [7, Proposition 5.1]: every partial-isometric repre-
sentation v of 't gives a covariant partial-isometric representation (m,,v) of
(Br+,I'T, 1) with m,(1;) = v,v%, and then Bp+ xPs° I'F is the universal C*-
algebra generated by the canonical partial-isometric representation v of I't.
Now since z + T, and x — T are partial-isometric representations of I'*" in
the Toeplitz algebra T (T'), there exist (by the universality) a homomorphism
o1 and @7« of Br+ xPi° T+ onto T(I).

Next consider the algebra C(I') generated by {)\, : # € T'} of the evaluation
maps A, (€) = &(x) on I'. Let ¢y and 17~ be the homomorphisms of 7(I') onto
C(I") defined by ¢r(T,) = Ay and ¢p- (Th) = A_y.

Proposition 4.1 ([7, Theorem 5.6]). Let T'" be the positive cone in a totally
ordered abelian group I'. Then the following commutative diagram exists:

0 0 0
l l or| l
0 — ker o Nker o« — ker o~ Cr 0
l l YT l
(4.1) 0 —— kerpr Br+ ><Eiso r+ =5 T(F) — 0
v
l ©T* l % l}ﬂT*
0 Cr T(T) c) — 0
| | !
0 0 0

where U maps each generator v, € Bry x2S Tt o §* € C*(I') ~ C(T).
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Proof. Apply Corollary 3.2 to the system (Bp+, '™, 7) and the extendible ideal
Brs o Let QP := Bry/Bro oo X2 TF and Q% := Br/Bry o x50 T,
Then we have:

0 0 0
| I,

0 —ker¢gp.,  —> Bre o XTI —Bry o x0T+ — 0
l ,ul B luBr#m

(4.2) 0 —> ker¢p , ——> Br+ xBsot EN Brs x0T —— 0

l ’yl ¢Q l’yBrﬁ-,oo

0 —— ker (ZSQ Qplso leo 0
| | |
0 0 0

We claim that exact sequences in this diagram and (4.1) are equivalent. The
middle exact sequences of (4.1) and (4.2) are trivially equivalent via the isomor-
phism T : Bpy x5 Tt — T(T). By viewing Bp+ as the algebra of functions
that have limit, the map f € Bp+ — limger+ f(z) induces an isomorphism
Br+/Br+ o — C, which intertwines the action 7 and the trivial action id on
C. So (Br+/Br+,,I'",7) ~ (C,I't,id). Moreover, T combines with the iso-
morphism /1 : Bri /Brs o x5 T = C x° Tt — C*(T) ~ C(I') to identify
the right-hand exact sequence equivalently to 0 — Cr — 7 (T) vy C(T) — 0.
For the bottom sequence, we consider the pair of

w:2€Cr zlyy and ip+ € TH = T € T(T).
It is a partial-isometric covariant representation, such that (7(T'), (¢, tp+) is a
partial-isometric crossed product of (C,I'",id). So we have an isomorphism
T:QP° — C x4 T(T) in which Y (ip+ (z)) = T for all z,
and moreover if (jg,u) denotes the canonical covariant partial-isometric rep-
resentation of the system (Q := Bp+/Br+ «,I'",7) in QP*, then T satisfies
the equations Y(uy) = Ty and Y (jo (e + Br+ o)) = tc(limy 1,(y)) = 1 for all
x € I'. To see T(ker ¢g) = Cr, recall from [4, Proposition 2.3] that
ker ¢p¢ := span{u’io(a)(l — uiu,)u, :a € Q, x,y,z € [T}
Since T (uyjg(a)(l — ulu.)uy) is a scalar multiplication of T.(1 — T.T7)T,
therefore Y(ker ¢g) = Cr. Consequently the two exact sequences are equiva-
lent: .
0 — ker¢gg - Qpis° S Q% — 0
T} T} hy
" .
0 — Cr — T(I) = ¢(') — 0.
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For the second column exact sequence, we note that the isomorphism j :
QPS° ~ C xP*°TF — T(I) satisfies yoy = ¢p+. This implies

Br+ o inSO 't ~ker(y0~) = ker or-,

and therefore the second column sequence of diagram (4.1) is equivalent to
0 — ker o7« — Bpy xP°T'T — T(T) — 0.

Next we are working for the first row. The homomorphism ¢p_, in the
following diagram

iso T+ ¢BF+, iso T+
1S0 150
BF+ X 7}? T BF+ X p T

restricts to the homomorphism quHm of the ideal Br+ o xPiso P+ ~ ker -
onto Br+ o, x5 I'" ~ Cp. So the homomorphism ¢r| : ker o7 — Cr has
kernel I := ker - Nker o, and therefore first row exact sequence of the two
diagrams are indeed equivalent.

Finally we show that such ¥ exists. Consider C(f‘) ~ C*(T) = Cxiq T is
the C*-algebra generated by the unitary representation x € I' — §, € C xiq I
Then we have a homomorphism 75« x §* : Bpy xP° 't — C x;q I' which
satisfies g« x 0*(v;) = 8% for all x € T'", and hence it is surjective. By looking
at the spanning elements of ker o7 and ker o« we can see that these two ideals
are contained in ker(ms« x 0*), therefore J := ker ¢ + ker o+ must be also
in ker(ms« x 0*). For the other inclusion, let p be a unital representation of
Br+ xP°T'F on a Hilbert space H, with ker p = J. Then for s € I't we have
p((1 —vsv%) — (1 —vivs)) = 0 because 1 —vsv¥ € ker pp« and 1 —viv, € ker op
belong to J. So 0 = p(vivs —vsv¥), which implies that p(vivs) = p(vsvy). On
the other hand the equation p((1 — vsv¥) + (1 — v¥vy)) = 0 gives p(vsvE) = 1.
Therefore p(vsv¥) = p(vivs) = I, and this means p(vs) is unitary for every
s € I'". Consequently a representation p : C xiq I' — B(H,) exists, and it
satisfies po (ms« X %) = p. Thus ker 75+ x 6* C ker p = J, and the composition
T5+ X 8* with the Fourier transform C*(I') ~ C/(I") is the wanted homomorphism
v, O

5. The primitive ideals of c xﬂiso N

Suppose I'™ is now the additive semigroup N. The algebra By is conveniently
viewed as the C*-algebra c of convergent sequences, the ideal By, with cg, and
the action 7 of N on c is generated by the unilateral shift: 71(xg, 21, 22,...) =
(0,9, 21,22, ...). The universal C*-algebra ¢ xPi*° N is generated by a power
partial isometry v := in(1). The Toeplitz algebra T (Z) is the C*-subalgebra
of B(¢?(N)) generated by isometries {1}, : n € N}, where T),(e;) = e,1; on the
set of usual orthonormal basis {e; : i € NU{0}} of /2(N), and the commutator
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ideal of T(Z) is K(¢?(N)). Kernels of pr and @7« are identified in [7, Lemma
6.2] by

ker o7 = span{g;"; : i, j,m € N};  kerpr~ =8pan{ f]’; : i,j,m € N},
where
9 = vivmuy, (1 —v*v)v; and  f% = vivp,vm (1 — vv*)v].

Moreover Z := ker o1 Nker o7 is an essential ideal in ¢ xP*°N [7, Lemma 6.8],
given by

span{ f;"; — fmAl — I i mtl  imeN, 0<i,j <m}.

i, - gmfi,mfj
The main point of [7, §6] is to show that there exist isomorphisms of ker pr
and ker o7~ onto the algebra

A:={f:N—= K(*N)): f(n) € P,K({*N))P, and Eoo(f)zli};nf(n) exists},

where P, := 1—T, 41T, is the projection of £*(N) onto the subspace spanned
by {e; : i = 0,1,2,...,n}, and such that they restrict to isomorphisms of 7
onto the ideal

Ap == {feA:li};nf(n):O} of A.

We shall show in Proposition 5.1 that A and Ag are related to the alge-
bras of compact operators on the Hilbert c-module ¢?(N, ¢) and on the closed
sub-c-module £2(N, cy). We supply our readers with some basic theory of the
C*-algebra of operators on this Hilbert module, and let us begin with recall-
ing the module structure of ¢?(N,c) (and its closed sub-module). The vector
space (?(N, c), containing all c-valued functions a : N — ¢ such that the series
> nena(n)*a(n) converges in the norm of ¢, forms a Hilbert c-module with the
module structure defined by (a-z)(n) = a(n)x for « € ¢, and its c-valued inner
product given by (a,b) = >~ . a(n)*b(n). In fact the module £*(N, c) is natu-
rally isomorphic to the Hilbert module ¢?(N)®c that arises from the completion
of algebraic (vector space) tensor product £2(N) ® ¢ associated to the c-valued
inner product defined on simple tensor product by (£ ® z,n ® y) = (£, n)x*y
for £,m € £2(N) and z,y € c. The isomorphism is implemented by the map ¢
that takes (e; ® ) € £2(N) ® ¢ to the element ¢(e; ® x) € £2(N, c) which is the
x ifi=n
0  otherwise.
we see that the two Hilbert co-modules ¢2(N, cg) and ¢*(N) ® ¢ are isomor-
phic. However since cg is an ideal of c, it follows that the co-module /2(N, cg)
is a closed sub-c-module of ¢?(N,c), and respectively £*(N) ® cq is a closed
sub-c-module of ¢2(N) ® c. Moreover the c-module isomorphism ¢ restricts to
co-module isomorphism ¢2(N, ¢g) ~ ¢*(N) ® co.

Next, we consider the C*-algebra L£(¢*(N,c)) of adjointable operators on
?*(N,c), and the ideal K(¢*(N,c)) of L(¢*(N,c)) spanned by the set {0, :
a,b € /3(N,c)} of compact operators on the module ¢?(N,c). The algebra
K(£%(N, cp)) is defined by the same arguments, and note that K(¢3(N,cp)) is

function [¢(e; @ z)](n) = { By exactly the same arguments,
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an ideal of K(¢?(N, c)). The isomorphism of two modules ¢%(N, ¢) and /*(N)®c,
implies that K(¢?(N, c)) ~ K(¢/?>(N)®c), which by the Hilbert module theorem,
this is the C*-algebraic tensor product K(¢*(N)) ® ¢ of K(¢*(N)) and c¢. We
shall often use the characteristic functions {1,, : n € N} as generator elements
of ¢ and the spanning set {0c,1,,c,01, : 4,77 € N} of K(¢*(N,c)) in our
computations.

There is another ingredient that we need to consider to state the Proposition.
Suppose S € L(¢*(N,c)) is an operator defined by S(a)(i) = a(i — 1) for i > 1
and zero otherwise. One can see that S*S =1, i.e., S is an isometry. Let p €
L(0?(N, c)) be the projection (p(a))(n) = 1,a(n) for a € £?(N, c), and similarly
q € L(?(N,cp)) be the projection (g(a))(n) = 1,a(n) for a € £3(N,cg). Then
the following two partial isometric representations of N in p£(¢2(N, c))p defined
by

w:n€e€N—pSip and t:née N pS,p,

induce the representations 7, x w and 7; X t of ¢ xP°N in pL(¢%(N, c))p which
satisfy m, x w(v;) = pSfp and m x t(v;) = pS;p for all i € N. These m, x w
and 7; X t are faithful representations [4, Example 4.3].

Proposition 5.1. The representations m, X w and 7 X t map ker pr and
ker 7 isomorphically onto the full corner pK(¢*(N,c))p. Moreover, they
restrict to isomorphisms of the ideal ker o N ker o« onto the full corner
gK(¢*(N, co))qg.

Remark 5.2. Tt follows from this proposition that Prim ker o7 and Prim ker ¢7»
are both homeomorphic to Primec. In fact, since ker o7« ~ cg xP° N by [2,
Corollary 3.1], we can therefore deduce that co xP*° N is Morita equivalent to
K(f*(N,c)). This is a useful fact for our subsequential work on the partial-
isometric crossed product of lattice semigroup N x N.

Proof of Proposition 5.1. We only have to show that
7 x t(ker pr-) = pK(£*(N,c))p and
7 x t(ker pr Nker pr-) = gK(£%(N, co))q.
The rest of arguments is done in [4, Example 4.3].

Note that the algebra p/(¢?(N, c))p is spanned by {PS. 21,601, P 0 15 4sm €
N} Since m x ¢(f7;) = PO, e1,,¢,01,p for every i,j,n € N, therefore m x
t(ker pr-) = pK(£3(N, c))p.

Similarly we consider that {q9:f®1{n}7ej®1{n}q :4,7 < n € N} spans ¢gK(¢*(N,
Co))q. We use the equation 0¢, 51, .01, = 05, 91,.¢,01, for every n € N, in the
computations below, to see that

me X g — zn;rl) = P(e(e:i@ln,ej@m - 9§i®1n+1,ej®1g)P
= p(956i®1n)7(67;®1n+1),(6]‘®10)>p
= p(9§i®1{n},ej®1o)p
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— [
- p(06i®1{n,}7ej®1{n})p'

To convince that every p(6g, g1, ., ;51,,,)P belongs to gK(0?(N, co))gq, we need
the embedding X of ¢K(¢?(N,co))q in pK(£?(N,c))p stated in Lemma 5.3.
In fact, every element p(0¢,51,,,.¢;01,,,)P SPans K (gK(F23(N, c))q), therefore
7 x t(ker o= Nkerpr) = S (g(L2(N, co))q). O

Lemma 5.3. Let p € L({*(N,c)) and q € L((*(N,co)) are the projections
defined by (p(a))(n) = 1,a(n) for a € £3(N,c), and (q(a))(n) = 1,a(n) for a €
(%(N,co). Then the full corner gIC(£*(N, co))q embeds naturally via (9055q) =
pls pp as an ideal in pK(F2(N,c))p, and there exists a short exact sequence

0 — gK(£2(N, co))g - PK(E(N, ))p L K(2(N)) — 0,

where q’C(pG:bp) =0, with z,y € (*(N) are given by x; = lim,_o(1;a(2))(n)
and y; = limy, o (1;6())(n). In particular we have
(

K
q p9§i®1n,ej®1mp) =4q (9;(6i®1n),p(ej®1m)>

= q’C(ogi(@lnviaej@lm\/j)
= Ti(1 - TTHT} € K(2(N)).

Proof. Apply [5, Lemma 2.6] for the module X := ¢?(N,c) and I = cg. In this
case we have the submodule X1 = ¢(N,cp). Note that if a € ¢*(N,c), then
every sequence a(i) € c is convergent in C, and the map q : a — (q(a))(¥) =
lim,, 00 (a())(n) gives 0 — £2(N,co) — ¢2(N,c) = ¢(3(N) — 0. Moreover
[5, Lemma 2.6] proves that L’C(Ha)fbl) = HQ)fb and q’C(Ga)fb) = Hig))fql(b) give the
exactness of the sequence

0 —s K(2(N, co)) > K(E2(N, ) L5 K(2(N)) — 0.

Since L’C(qﬁfblq) = 9;%3) ab) = p@fbp for every a and b in ¢?(N, cg), the cor-
ner ¢kC(¢2(N, cg))q is embedded into p/C(¢£2(N, ¢))p such that ¢* is defined by
¢~ (p3pp) = q'C(H;((a)ﬁp(b)) = 0., where z; = lim, . (1;a(?))(n) and y; =
lim;, o0 (1;b(2))(n). Thus we obtain the required exact sequence. O

Proposition 5.4. There are isomorphisms © : pK(¢2(N,c))p — keror and
O, : pK(?(N,c))p — kerpr. defined by @(pegi@mej@lnp) = gp; and
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@*(p9§i®1mej®1np) = fi; for all i,j,n € N such that the following commu-
tative diagram has all rows and columns exact:

0
I

0 — gK(£*(N, co))g — pK(E*(N, ¢))p — K(*(N)) — 0
l

LK o l@* l

(51) 0 — pK(PN,¢))p — ¢ xBPN —2L, 7(2) 0
QKQ P+ l MT* l

0 —— K(2(N) 7(2) c(T) 0

; S

Proof. We apply Proposition 4.1 to the system (c,N,7). Let {v; : i« € N}
denote the generators of ¢ xP° N, and {J; : i € Z} the generator of C*(Z).
Then the homomorphism ¥ : ¢ xP°N — C(T) given by Proposition 4.1 satisfies
U(v;) = 0 = (2 = 7') € C(T) for every i € N. Moreover © = (m, x w)~!
and O, = (m; x t)~1, by Proposition 5.1, satisfy Ol o1, ,¢,21,P) = 9i; and
9*(179&@1”,@,@1”?) = f}; for all i, j,n € N. So the first row sequence is exact,
and which is equivalent to the one of (4.1) for 't = N because

0 T id ker o7 o] K:(€2 (N)) 0
0 (PN, co))q 2> pK(E(N, ))p —— K(2(N)) 0.

For the first column we use the automorphism « of gk (¢2(N, ¢g))q defined on
its spanning element by a(qegi“@l{n}yej@l{n}q) = q9§:7i®1{n}7enij®1{n}q. Then
by inspections on the spanning elements of the algebras involved, we can see
that the diagram (5.1) commutes. O

Thus we know from the diagram that the set Primc xP!*° N is given by the
sets Prim K(¢2(N, c¢)) and Prim 7 (Z). Since

Prim 7(Z) = Prim K(¢*(N)) U Prim C(T) = {0} U T,
and Prim K(¢*(N, ¢)) is homeomorphic to
Prim ¢ = Prim ¢p U Prim C ~ N U {oo},

therefore Prim ¢ xP*° N consists of a copy of {I,} of N embedded as an open
subset, a copy of {J.} of T embedded as a closed subset. We identify these
ideals in Proposition 5.7 and Lemma 5.12.
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Note for now that ker o7 and ker o7+ are primitive ideals of ¢ xP!%° N: the
Toeplitz representation T of T(Z) on ¢2(N) is irreducible by [8, Theorem 3.13],
and 7 and o7+ are surjective homomorphisms of ¢ xP°N onto T(Z), so Topr
and Topr- are irreducible representations of ¢ xP*°N on ¢2(N). Moreover, irre-

ducibility of the representation id og" : p/C(¢%(N, ¢))p N K(2(N)) 4 B(2(N))
implies the kernel Z = ker o7 Nker - ~ ¢K(£2(N, co))q of idog® is a prim-
itive ideal of pIC(¢2(N,c))p ~ kerpr. Similarly, Z is a primitive ideal of
ker o« ~ pK(£%(N,c))p. Although Z ¢ Primec xP° N, the ideal Z is es-
sential in ¢ xP° N by [7, Lemma 6.8], so the space PrimZ ~ Prim ¢ is dense
in Prim ¢ xPis° N,

Next consider that K(£*(N)) = span{e;; := Ti(1 — TT*)T} : 4,j € N}, and
recall that there is a natural isomorphism A of K(¢2(N, c)) ~ K(¢*(N)) ® c onto
the algebra

C(NU {oo}, K(£*(N))) := {f : N = K(£*(N)) : 1i711nf(n) exists in K(¢%(N))}

given by A(e;;®1x)(n) = 1x(n)e;; for i, j, k,n € N. Then A(pK(¢*(N,c))p) C A
because

[A(p(ei; @ 1m)p)](n) = [Aleij @ Linvivj)l(n)
_J ey ifn>mvVvivi
0 otherwise
= ma(f1%) = o)

Since A = 100, = 700, A maps the corners pK(£2(N, c))p and gk (£*(N, cg))g
isomorphically onto the algebra A and Aj respectively. Construction of this
isomorphism in [7, §6] involves the representations m,, and 7, for each n € N,
of ¢ xPis°N on £2(N) that are associated to the partial-isometric representations
k— P, Ty P, and k — P,T}; P, respectively, where P, := 1—"T, 1T, is the
projection onto H, := span{e; : i = 0,1,2,...,n}. For every a € kerors,
the sequence {m,(a)}nen is convergent in K(¢?(N)), and then the map a €
ker o7+ — w(a) = {mn(a)}nen € A defines the isomorphism.

These observations suggest that an extension of 7 should give a repre-
sentation of ¢ xP° N in the algebra Cy, (N, B(¢?(N))), and then primitive
ideals are the kernels of evaluation maps. But we can consider a smaller
algebra which gives more information on the image of m. Note that the al-
gebra C(N U {oo}, B(¢3(N))) is too small to consider, because the sequence
(PoTi P )nen as we see, does not converge to Tj in the operator norm on
B(f%(N)), but it converges strongly to Tj. Therefore we consider the set
Ch(N U {oo}, B(£?(N))._s) of functions £ : N — B(¢?(N)) such that lim, &,
exists in the *-strong topology on B(¢%(N)), and which satisfies [{|lcc =
sup,, ||€nll < oo. By [9, Lemma 2.56], it is a C*-algebra with the pointwise
operation from B(¢?(N)) and the norm || - ||. Then let

B:={f:N— B(*(N)): stég £ ()| B2y < o0, f(n) € P,B(¢*(N))P, and
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lim f(n) exists in the *-strong topology on B(¢*(N))}.

n—oo
Note that B is a subalgebra of Ct,(NU{co}, B(¢?(N))._s) because P, B(¢*(N))P,
~ B(H,) is closed in B({?(N)) for every n € N, and B has an identity 1z
= (P, P, P,...).

Proposition 5.5. There are faithful representations m and ™ of ¢ xP° N in
the algebra B, which defined on each generator vj, € ¢ xP*° N by

m(vg)(n) 1= mp(vg) = PyTip Py and w*(v)(n) := 7 (vg) = Py Ty Py, for n € N.

These representations m and 7 are the extension of isomorphisms m : ker o=
— A and 7* : ker o7 — A of [7, Theorem 6.1].

Proof. The map 7 is induced by the partial-isometric representation k — Wi
where Wi (n) = P,TiP,, and similarly for 7* by k — Sy where Sg(n) =
P, TP, for n € N. These are unital representations: 7(1) = m(vo) = (Po, Pi,
Pg,. ) = 7T*(1)

By [7, Proposition 5.4], the representation 7 is faithful if and only if for any
r>0and : <jin N, we have ', € B for which

15 = (@) = m(vp) 7 (vp)) (m(vi)m(vi)* — m(v;)m(v;)")
is a nonzero element of B. Let r > 0 and ¢ < j € N, then we consider the three
cases 0 <r<i<j,i<r<jandi<j<rseparately. If 0 <r <7 < j, then

1.5 (1) = (P = mi(vp) mi(vr)) (i (vi) i (01)" — 7 (0)mi (v5)”)
— (P, — BT P,T,P,)(PT, T} P, — P,T;P,T; P)
= (P = PT;T. P P)(PTT P; - 0)
=(P,— P, )(RTT;P,)
and that [¢];(i)](e;) = (P — Pi—y)(ei) = e;. If i < j < r, then similar compu-
tations show that [§] ;(i)](e;) = [P(PTiT; Pi)](ei) = e, and for i < r < j we
have [§];(7)](er) = (P — Po)(er) = er. Thus £, # 0 in B. The same outline

i,j
of arguments is valid to show the representation 7* is also faithful. O

So we have for every n € N the representations m,, = e,om and 7}, = e, 07" of
¢ xPi°N on H,,, where €, are the evaluation map of C},(NU{oo}, B(¢*(N)),_s).
Hence they are irreducible, indeed every nonzero vector of the subspace H,, of
(%(N) is cyclic for w}i: if (ho, h1,...,hy) € Hy, with hj # 0 for some j, then for
every i € {0,1,2,...,n}, we have

(75 (973)) (hou b, b)) = [Ti(1 — TT*)T; (hoy by, .. )

=(0,...,h;,...,0), where h; is in the i-th slot,

SO ﬂ;(}% 9;;)(h) = e;, and therefore H,, = span{m;,({)h : { € c xPso N1, Same
arguments work for 7, .

Note for every n € N that m,(f/) = ey = ma(gf_;,_;) for all 0 <
i, j,m, k < n, and similarly 7}, (97"%) = ei; = 7 ( k Yforall0 <i,j,m, k<

n—i,n—j
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m

n. Thus every f — gﬁ_in_j

,’f_i’n_j) € kerm). We shall see many more elements of kerm, as well as
ker 7} in Proposition 5.7.

But now we recall that for n € N the partial-isometric representation J™ :
N — B(H,) in [7, §3] defined by JI'(e,) = { gt“ fﬂi;;isee,{o’ Liooomd
induces the representation 71}, x J" of (¢ xP*°N,v) on H,,. In fact 7}, x J* =
T, because for every k € N we have (73, x J"(vg))(e) = J(e;) = Py TPy (er)
where r € {0,1,2,...,n}.

The ideal ker @?ZOW§T x J" appears in the structure of ¢ xP*° N [7, Lemma
5.7]. To be more precise about it, we need some results in [7, §5] related to
the system (C"*1 7, N). The crossed product C"*! xPis© N is the universal
C*-algebra generated by a canonical partial-isometric representation w of N
such that w, = 0 for 7 > n+ 1. Let g, : (c xP N v) — (C"F! xPiso N )
be the homomorphism induced by w : N — C"*! xPis© N, and note that it is
surjective. Then Lemma 5.7 of [7] shows that ker g, = ker(e?_,m, x J7) =
Ni_o ker(ﬂJ}IT x J"). So by these arguments we obtain the following equation

is contained in kerm,, and similarly (g;"; —
;

(5.2) ker ¢, = ﬂ ker 7, for every n € N.
r=0

Lemma 5.6. For n € N, let L, be the ideal of (c xP*° N,v) generated by
{v, :r >n+1}. Then L, = kerq,, and it is isomorphic to

(5.3) {€€m(cxP°N)C Cp(NU{oo}, B(f3(N))s_s) : £=0 on {0,1,2,...,n}}.

Proof. We have L,, C kergq, because g,(vy) = 0 for all k > n+ 1. To see
ker g, C Ly, let p be a representation of ¢ xP*° N on H, where kerp = L,.
Since p(v;) = 0 for every t > n + 1, by the universal property of C"*! xPiso N,
there exists a representation g of C" ™! xP*° N on H, which satisfies poq,, = p.
Thus kerg,, C kerp = L,.

Next we show that 7(L,) and (5.3) are equal. Let r > n + 1, and consider
m(vy) is the sequence (P T,-P;)ien. 0 <i<n,then0<i+1<n+1<rand

PT.Pi=(1-TinT/ )T P = (1 =T T ) Tia T o4y Pi = 0.

So w(Ly) is a subset of (5.3). For the other inclusion, suppose f € m(c xPis° N)
in which f(i) = 0 for all 0 < i < n. Since f = 7(£) for some & € ¢ xP*° N, and
w(€)(i) = mi(§) = f(i) for all i € N, we therefore have m;(§) = f(i) = 0 for all
0 <i<mn. Thus £ € N, ker m; = ker gy, and hence f = w(§) € w(Ly,,). O

Let 7 := lim,m, and 75 := lim, 7, where the limits are taken with
respect to the strong topology of B(¢?(N)). Then 7o, and 7%, are the irreducible
representations o7 : vy — T} and 7= 1 v — T} of ¢ xPi° N on H,, := (?(N).
Thus by [7, Lemma 6.2] we have

ker 7o, = ker 1 = Span{g;’; = v; v vy, (1 — v v)v; 1 i, j,m € N},
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ker w3, = ker o+ =8pan{ f;’; := vjv;,vm (1 — vv*)v] 14, j,m € N}.

For n € N, let 7, and 7, be the irreducible representations of ¢ xP**°N on the
subspace H,, of £2(N), that are induced by the partial-isometric representations
k — P,TyP, and k — P, T} P,. Let L, be the ideal of (c xP!*° N, v) generated
by {v. : 7 >n+1}. Then 7, is the representation

gpom:cxPON "5 BC Ch(NU{oo}, BF2(N))u_s) - B(H,),
and similarly 7} =&, on*. So kerm,, ~ kere,, ~ kerm;;.

Proposition 5.7. Let n € N. Then
(a) kerm, = kerm* ~kere, = {£ € B:&(n) =0};
(b) kermeo ~ ker i, = {£ € B : x-strong lim,, {(n) = 0};
Furthermore,
(C) kerﬂ';; = Spﬁ{g% - ’rli—i,n—j + n: 0 S iaj)m) k S n, mn € L"}f
ker 7, = span{ ], — gﬁ_i’n_j +n:0<4,5,mk<n, n€ Ly}, and
ker 7} = kerm,, forn € N, in particular we have ker mg = ker mg = Lo;
(d) kermy|ker o = SPAD{(f] — Zk]) + fiy, 00 <4,5,mk < n, one of
:L', y? z 2 n + 1}7
ker 7y |ker o = SPAN{ (9] — gf’j) +9i, 0 <i,j,mk < mn, one of
x, y’ z Z n + 1})
O H(ker 7y [ker e ) = O (ker 7 |ker o), and
ker 7} lker o ~ {@ € A+ a(n) = 0} > ker mp |ker o 5

(e) kerm;|z = span{g;”; — gfjﬂ :0<id,5<minN, andm # n} =
kerm,|z = span{ = iTZ'H :0 <45 <minN, and m # n} is

isomorphic to the ideal {a € Ag : a(n) = 0}.

Remark 5.8. Note that the representations mp, |ker op» and 75 | ker pp Are equiv-
alent to the evaluation map ¢, : f € A— f(n) € B(H,) of A on H,, so we
have ker 7y, |ker oy = Ker 7} |ker op is isomorphic to {f € A : f(n) = 0}, and
kerm,|r = ker7l|z ~ {f € Ag : f(n) = 0}; and ker 7o, ~ ker 7’ ~ A.

Proof of Proposition 5.7. Fix n € N. We show for kerm,, and skip the proof
for ker 7}, because it contains the same arguments. We clarify firstly that the
space

J=span{fs — gk i, ;+n:0<i,j,mk<nn€ Ly}
is an ideal of (¢ x, N,v) by showing vJ C J and v*J C J. Let i = n, then
Vo UE (1 — v v)vp—; = v(v voRvE) (1 — 0™ V) vp—;
= vupUpv v(l — Vv 0)Up—;
= V41041 (v — vV V)V = 0,
therefore v( £ — g6 ,,_;+1) = V0R U} Vm (1—v0*) 0T —v0RVf (1 =0 V)V, — 401 =
Jn41,j+vn belongs to J because f ; € L,. If 0 <7 <n—1,thenl <i+1<n
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and n — ¢ > 1, and we have

* * * % . * *
’U'Un_i’Uk;’Uk. = Vv U’n—i—lvn_l_lvn—i—lvkvk

*

_ . * )k *
= Up—i—1Un—i—1VV Uy _;_1 Vk Vg

ok oy *
= VUp—i—1Un—iUp_;VEVk

ok *
- Un—i—lvmax{"—i7k}vmax{n—i,k}7

m m max{n—i,k}

O V(fll = Gnim—y + 1) = Fl1 =~ Gn (e, TN E T
Now we check for v*7, and assume 7 = 0, then

*

VLY = Gy 1) = 0 [op 0 (1 = 00 )0} — v oo (1= 0 0)va—j 1)
=0—gpiryy; tvNeET
because g,’i +1,n—j € Ln. 1t follows by similar computations for 1 <4 < n that

Frademy 9 _(iymy TVUNET.

O = iy ) =

Next we show that J = kerm,, one inclusion J C kerm, is clear because

T (f15) = ﬁn(gfhiﬁnfj) = T;(1 = TT*)T; and L, C kerm,. For the other
inclusion, let o : ¢ xP*° N — B(H,) be a nondegenerate representation with
kero = J. Note that B(H,) = span{e;; := T;(1 = TT*)T} : 0 < i,j < n}.
Since {f; : 0 < i,j < n} is a matrix-units for B(H, ), there is a homomorphism
Y of B(H,) into B(H,) which satisfies e;; = o(f";). Therefore o = 1) o mp,

and hence kerm, C kero = J.

Using the spanning elements of kerm,, and ker7, and the equation e
gﬁ,iyn,j = f(gflﬂ-ﬁnfj ff;”_(n_i) n_(n_j)), we see that they contain each other,

therefore kerm, = kerm, for every n € N. The ideal Lg is kermy = kerm;
because f¢ o — g0 = v*v —vv* € Lo.

For (d), let now J be span{(f]; — lkj) + fiy 10 <4,5,mk <n, one of
x,y,z > n+ 1}. Then the same idea of calculations shows that J is an ideal
of ker 7+, and it is contained in ker 7y, |ker pp. , then for the other inclusion
let o be a nondegenerate representation of ker o~ such that kero = J, get
the homomorphism ¢ : B(H,) — B(H,) defined by 9(e;;) = o(f;), and

4,J
hence the equation ¢ o 7, = o implies that ker 7, |xer o = J. By computa-
tions on the spanning elements we see that the equation O ! (ker 7, |xer ope) =
O~ ! (ker 7} |ker 41 ) is hold. The same arguments work for the proof of (e), and

we skip this. O

Remark 5.9. The map n € NU {00} ~ I,, := ker7} € Prim(c xP*° N) pa-
rameterizes the open subset {P € Prim(c xP* N) : kerpr ~ A ¢ P} of
Prim(c xP*° N) homeomorphic to Prim.A. Note that the oo corresponds to

the ideal ker7?, = kerpr- € Prim(c xP* N), and it corresponds to Z =
ker o7+ |ker o € Prim A.
Lemma 5.10. (1) Moo In = L for every m € N;

(i) Mpen In = {0};
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(iii) {0} & (Mo In) C ker i, Nkermye for every m € N.

Proof. Part (i) follows from (5.2) and Lemma 5.6. For (ii), note that g is
the identity map on ¢ xP*° N, and that ®;enm; = (Bien(); x J¥))o id. So
MNnen In = {0} by faithfulness of ®;en(n)); x J*) [7, Corollary 5.5].

The inclusion I, C kern}, for every m € N follows from the next

n>m
arguments:
ﬂ ker(m) |kernes) 2 {f €A: f(n) =0V n>m}
n>m

c{feA: ILm f(n) =0}
= Ag ~ ker 1°_|ker r.. C kerm’, € Prime xP*° N,

so the two ideals J := ﬂn>m I, and L := ker 7y, of ¢ inSO N satisfy JN L C
ker 7%, therefore either J C kerw} or L C kerw’ , but the latter is not
possible. To show J C ker 7, since ker m,, = ker 7" for each n, we act similarly

using the fact that
ﬂ ker (7 |kernz, ) = {f € A: f(n) =0V n>m} Ckermo € Prime x Piso N,

n>m

Therefore, J C kerm’, N kermo. Moreover, since gg o — g o 7# 0 which
satisfies 77 (90 0 — 90.0) = 0 for all n > 1, it follows that {0} & (N I,). O

n>m N

Remark 5.11. Part (ii) of Lemma 5.10 confirms with the fact that Z is an
essential ideal of ¢ xP!*° N [7, Lemma 6.8].

Next consider for z € T, the character v, € 7 ~ T defined by v, : m+—Z™.
Note that the map 7, : k € N — 7.(k) is a partial-isometric representation of N
in C ~ B(C). Consequently for each z € T, we have a representation 7, x 7,
of ¢ xP*° N on C such that 7, x v.(vx) = v.(k) = 2" for k € N, and it is
irreducible. Moreover we know that the homomorphism ¥ : ¢ xP* N — C(T)
is the composition of the Fourier transform C xiq Z ~ C*(Z) ~ C(T) with
0 x 6 ¢ xP N — C Xiq Z, in which ¢ : (z,,) € ¢ — lim, x, € C and § is the
unitary representation of Z on C Xiq Z.

Lemma 5.12. For z € T, the character v, : k — Z* in 7 ~T gives an

irreducible representation m, X v, of xPo N on C such that Ty, X Yz =
.0 (¢ x 6%). Denote by J, the primitive ideal ker .. x v, of ¢ xP** N. Then
ker oo and ker mk, are contained in J, for every z € T. Moreover every ideal
I,, for n € N is not contained in any J,.

Proof. By using the Fourier transform we can view C xiq Z ~ C*(Z) as C(T),
and it follows that v € ¢xP*°N is mapped into the function ¢y, : t 7 e c(T).

We know that primitive ideals of C(T) are given by the kernels of evaluation
maps €:(f) = f(t) for t € T, and the character v, is a partial-isometric repre-
sentation of N in C for z € T. Then by inspection on the generators, we see
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that the representation 7, X7, of ¢ xP°N on C satisfies 7., x v, = £,0(£x §*).
So the primitive ideal J, := ker 7, X 7, of ¢ xP° N is lifted from the quotient
(c xP° N)/J ~ C(T).

Since 7. X V:(fi;) = 0 = my. X 72(9]7y), ker moo = ker o7 and kermy, =
ker o7+ are contained in J, for every z € T. Finally, since 7, X v.(vp41) =
"t £L0forneN, I, ¢ J, for any z € T. O

Theorem 5.13. The maps n € NU{oco}U{c0*} — I, and z € T — J, combine
to give a bijection of the disjoint union NU{oo}U{oc*}UT onto Prim(c xPi°N),
where I+ 1= ker . Then the hull-kernel closure of a nonempty subset F' of
NU{oo} U {0} UT

is given by

(a) the usual closure of F in T if F C T;

(b) F if F is a finite subset of N;

(c) FUT if F C ({oo} U {o0*));

(d) FU{oo}U{o0o*} UT) if F # N is an infinite subset of N;

(e) NU{oo}U{oo*}UT if NC F.

Proof. The diagram 5.1 together with Proposition 5.7 gives a bijection map of
NU {0} U{00*} UT onto Prim(c xPis° N).

Lemma 5.10(ii) gives the closure of the subset F'in (e), and Lemma 5.10(iii)
gives the closure of the subset F in (d). If F C ({oo} U{o0*}), then F = FUT
because ker 7%, ker mo, C J, for every z € T by Lemma 5.12.

To see that F' = F for a finite subset F' = {n1,n2,...,n;} of N, we note

that if an ideal P € Prim(c x, N) satisfies ()_; I,,, C P, then
e P # J, for any z € T because vy, 11 € ﬂzzl I, but vy, 41 & Jz;
o P # I, I because vy, 41 € ﬂgzl L, but v, 41 & oo, Loor;
e P+ 1, forn € F because (g&o —g&‘gl) € ﬂgzl I,,, but (g&o —g&‘gl) g
I, forn ¢ F.
So it can only be P = I; for some j € F. Finally the usual closure of F'in T is

followed by the fact that the map z — J, is a homeomorphism of T onto the
closed set Prim C(T). O
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