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ON “VERY PALINDROMIC” SEQUENCES

Bojan Bašić

Abstract. We consider the problem of characterizing the palindromic
sequences 〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, having the property that for
any K ∈ N there exists a number that is a palindrome simultaneously
in K different bases, with 〈cd−1, cd−2, . . . , c0〉 being its digit sequence in
one of those bases. Since each number is trivially a palindrome in all
bases greater than itself, we impose the restriction that only palindromes
with at least two digits are taken into account. We further consider a
related problem, where we count only palindromes with a fixed number
of digits (that is, d). The first problem turns out not to be very hard;
we show that all the palindromic sequences have the required property,
even with the additional point that we can actually restrict the counted
palindromes to have at least d digits. The second one is quite tougher; we
show that all the palindromic sequences of length d = 3 have the required
property (and the same holds for d = 2, based on some earlier results),
while for larger values of d we present some arguments showing that this
tendency is quite likely to change.

1. Introduction

Whenever a property of a number depends on the notational base, it might
be an interesting research direction to check whether a number can satisfy the
considered property simultaneously in two or more bases, or even in each base,
how many such numbers exist, how the possession of the property with respect
to one base depends on the possession of the property with respect to another
base etc. Let us mention a few interesting results of this kind.

Senge and Straus [17] proved that the number of integers such that the sum
of its digits in each of the two bases a and b is smaller than a given bound
is finite if and only if ln a

ln b
/∈ Q; Stewart [18] gave an effective version of this

result, and obtained a generalization. The independence (in a way) of the sum-
of-digits function in different bases was a subject of research of Bésineau [3],
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Kamae [10], Queffelec [15], Kim [11] etc. Mauduit, Pomerance and Sárközy [14]
considered some questions about numbers that are Niven numbers with respect
to multiple bases. In automata theory, Cobham [6] obtained a very interesting
characterization of sets of integers recognizable independently of the notational
base. Questions of this kind have been asked not only for integers, but also
for real numbers. We mention, for example, the question when normality with
respect to the base a implies the normality with respect to the base b (Schmidt
[16]), the same question for disjunctiveness (El-Zanati and Transue [8]) and
randomness (Calude and Jürgensen [4]) and so forth.

Hereby we are concerned with the property of being a palindrome in base
b (we call a number a palindrome in base b if for its expansion in base b, say
〈cd−1, cd−2, . . . , c0〉b, cd−1 6= 0, the equality cj = cd−1−j holds for every j such
that 0 6 j 6 d − 1). Various arithmetic properties of palindromes have been
the subject of many works; for a few examples, see the introductory part of
[2] (which is a paper that the present paper is a direct continuation of), and
some more are [1, 12, 13] and the very recent result [5], which states that for
any base b > 2 and for any linear homogeneous recurrence sequence (an)n∈N

satisfying certain conditions there exists a positive constant c > 0 such that
|{n 6 x : an is palindromic in base b}| ∈ O(x1−c).

Answering a question by Goins [9], the main result in [2] shows not only
that for any given K there is a number that is a palindrome simultaneously in
K different bases, but there is actually a number that is a d-digit palindrome
simultaneously in K different bases, where d is given in advance. In fact, the
same question has been asked by Di Scala and Sombra [7] a few years before
Goins, but this was overlooked in the mentioned paper. The last section of [2]
states a few questions that seem to be a natural continuation of research on
this topic.

In particular, it is asked which palindromic sequences 〈cd−1, cd−2, . . . , c0〉,
cd−1 6= 0, have the property that for any K ∈ N there exists a number that is a
d-digit palindrome simultaneously inK different bases, with 〈cd−1, cd−2, . . . , c0〉
being its digit sequence in one of those bases. Is this true for the sequences
〈1, 1, 1〉 and 〈1, 0, 1〉 and, more generally, 〈1, 1, . . . , 1〉 and 〈1, 0, 0, . . . , 0, 1〉, is
this perhaps true for all palindromic sequences, or could the sequences for which
this is true be characterized? The only sequences for which this is known to be
true are all the sequences

(1)

〈(
d− 1

d− 1

)

,

(
d− 1

d− 2

)

,

(
d− 1

d− 3

)

, . . . ,

(
d− 1

1

)

,

(
d− 1

0

)〉

where d > 2, as well as their multiples by a factor of the form td−1.
We could first ask a question that will turn out to be significantly easier:

which palindromic sequences 〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, have the property
that for any K ∈ N there exists a number that is a palindrome (not necessarily
with d digits) simultaneously in K different bases, with 〈cd−1, cd−2, . . . , c0〉
being its digit sequence in one of those bases? Of course, since each number is a
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(one-digit) palindrome in all the bases greater than itself, the question is trivial
unless some restriction is imposed. Two restrictions that seem reasonable are
either to take into account only palindromes having at least two digits, or to
take into account only palindromes having at least d digits. The first restriction
is perhaps more natural, but in Section 2 we show that, even under the second
restriction (which is a stronger one), actually all the palindromic sequence have
the described property. In Sections 3 and 4 we consider the question from the
previous paragraph; we show that all the palindromic sequences of length 3
have the property described there (and we recall that this is also true for the
palindromic sequences of length 2), while for longer palindromic sequences we
present some arguments showing that this tendency is quite likely to change.
Finally, in Section 5 we present a few possible directions for further research.

2. Variable number of digits

The following theorem actually turns out to be easy to prove, but we never-
theless find it an interesting result. Note that (here and onward) N stands for
the set of positive integers.

Theorem 2.1. Let d > 2 and a palindromic sequence 〈cd−1, cd−2, . . . , c0〉,
cd−1 6= 0, be given. Then for any K ∈ N there exist n ∈ N and a list of bases

{b1, b2, . . . , bK} such that, for each i such that 1 6 i 6 K, n is a palindrome

with at least d digits in base bi, and that, for some i0 such that 1 6 i0 6 K, we

have 〈cd−1, cd−2, . . . , c0〉bi0 = n.

Proof. Choose any m ∈ N that is greater than each ci, and any s ∈ N that has
(at least) K divisors. Let 1 = a1, a2, . . . , aK be the divisors of s. We claim
that

n =
d−1∑

j=0

cjm
sj

and the list {bi : 1 6 i 6 K}, where bi = m
s
ai , satisfy the given requirements.

Indeed, for each i such that 1 6 i 6 K we have
〈

cd−1, 0, 0, . . . , 0
︸ ︷︷ ︸

ai − 1 zeros

, cd−2, 0, 0, . . . , 0
︸ ︷︷ ︸

ai − 1 zeros

, cd−3, 0, 0, . . . , 0, 0, c1, 0, 0, . . . , 0
︸ ︷︷ ︸

ai − 1 zeros

, c0

〉

bi
= n

which can be seen by noting that

d−1∑

j=0

cj(m
s
ai )aij =

d−1∑

j=0

cjm
sj = n.

Therefore, n is indeed a palindrome in base bi, and has ai(d−1)+1 > d−1+1 =
d digits. Further, we have 〈cd−1, cd−2, . . . , c0〉b1 = n, which completes the
proof. �
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3. Three digits

It is mentioned in Introduction that all the sequences of the form (1), as
well as their multiples by a factor of the form td−1, have the property that we
are interested in here. Note that for d = 2 the sequence (1) becomes 〈1, 1〉;
multiplying it by a factor of the form td−1 actually becomes multiplying by any
factor t, which thus gives all the palindromic sequences of length 2. We now
show that also for d = 3 all sequences fulfill the requirement.

Theorem 3.1. Let a palindromic sequence 〈c0, c1, c0〉, c0 6= 0, be given. Then

for any K ∈ N there exist n ∈ N and a list of bases {b1, b2, . . . , bK} such that,

for each i such that 1 6 i 6 K, n is a 3-digit palindrome in base bi, and that,

for some i0 such that 1 6 i0 6 K, we have 〈c0, c1, c0〉bi0 = n.

Proof. We actually give two constructions that prove this theorem, based on
completely different approaches. Since next to nothing is known in the case
d > 3, the author believes that offering two different approaches here increases
chances for researches to build on some of these ideas and make a progress in
the case d > 3.

In both constructions we assume that a palindromic sequence 〈c0, c1, c0〉,
c0 6= 0, and K ∈ N are given, and find n ∈ N and a list of bases {b1, b2, . . . , bK}
satisfying the statement.

3.1. First construction

Let s be a number that is coprime to all the numbers 1, 2, . . . ,K − 1 and
to c0 (we may, e.g., choose s such that s − 1 is a multiple of c0(K − 1)!). We
further require that s is large enough, the meaning of which will be specified
later.

Note that, for each i such that 1 6 i 6 K − 1, since i is coprime to s, we
also have that i is coprime to s− ic0(K − 2)!; for a similar reason, (K − 2)! is
coprime to s − ic0(K − 2)!; finally, since c0 is coprime to s, we also have that
c0 is coprime to s − ic0(K − 2)!. Therefore, there exists modular inverse of
ic20(K − 2)! modulo s − ic0(K − 2)!. This shows that the right-hand sides of
the following system of congruences are well defined:

(2)

m ≡ − c1
c20(K − 2)!

(mod s− c0(K − 2)!),

m ≡ − c1
2c20(K − 2)!

(mod s− 2c0(K − 2)!),

m ≡ − c1
3c20(K − 2)!

(mod s− 3c0(K − 2)!),

...

m ≡ − c1
(K − 1)c20(K − 2)!

(mod s− (K − 1)c0(K − 2)!).
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Since s can be chosen as large as we want, we can achieve that all the moduli are
positive. We now show that this system has a solution m. It is enough to prove
that the moduli are pairwise coprime, since the Chinese remainder theorem
then immediately gives the solution m. Suppose that p | s− i1c0(K − 2)! and
p | s− i2c0(K − 2)!, where p is prime and 1 6 i1 < i2 6 K − 1. Then

p | (s− i1c0(K − 2)!)− (s− i2c0(K − 2)!) = (i2 − i1)c0(K − 2)!.

If p | c0, then from p | s− i1c0(K − 2)! we get p | s, which contradicts the fact
that s and c0 are coprime. If p | (K − 2)!, then we similarly get p | s, but since
p | (K−2)! implies p 6 K−2 and s is coprime to all the numbers 1, 2, . . . ,K−1,
this is again a contradiction. Finally, if p | i2 − i1, then p 6 i2 − i1 6 K − 2
and thus p | (K − 2)!, which reduces this case to the previous one.

Therefore, let m be a solution of the system (2). Note that we may choose
a solution m as large as we want, which will be needed. Finally, let

n = c0(ms)2 + c1ms+ c0.

We claim that n is a 3-digit palindrome in each base bi, 1 6 i 6 K, where

bi = m
(
s− (i− 1)c0(K − 2)!

)
.

The rightmost digit of n in base b equals n mod b. If
⌊

n
b2

⌋
< b, then n has at

most 3 digits in base b, and its third digit from the right equals
⌊

n
b2

⌋
. Therefore,

n is a 3-digit palindrome in base b if and only if n mod b =
⌊

n
b2

⌋
.

We now claim that for each i, 2 6 i 6 K, we have

s− (i − 1)c0(K − 2)! | c0ms+ c1.

Indeed:

c0ms+ c1 ≡ c0m
(
(i− 1)c0(K − 2)!

)
+ c1

≡ c0

(

− c1
(i− 1)c20(K − 2)!

)(
(i− 1)c0(K − 2)!

)
+ c1

= −c20c1(i− 1)(K − 2)!

(i− 1)c20(K − 2)!
+ c1

= −c1 + c1

= 0 (mod s− (i− 1)c0(K − 2)!).

Therefore, bi | m(c0ms+ c1) = c0m
2s+ c1m, and thus

bi | s(c0m2s+ c1m) = c0(ms)2 + c1ms = n− c0.

This means that n modulo bi equals c0 for each i such that 2 6 i 6 K. For
i = 1 we have b1 = ms, and thus again n modulo bi equals c0. (Recall that m
can be chosen large enough so that bi > c0.)

We now prove that
⌊

n
b2i

⌋
= c0, that is, c0 6 n

b2i
< c0 + 1. The first inequality

is obvious. Let us now show the second one. It is enough to show that n
b2i

can
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arbitrarily close to c0. As we observed earlier, for a fixed s, m can be chosen
as large as we want. Note that

lim
m→∞

n

b2i
= lim

m→∞
c0(ms)2 + c1ms+ c0

(
m
(
s− (i− 1)c0(K − 2)!

))2

= lim
m→∞

c0s
2 + c1s

m
+ c0

m2

(
s− (i− 1)c0(K − 2)!

)2

=
c0s

2

(
s− (i− 1)c0(K − 2)!

)2 .

Therefore, for any fixed value of s, the quotient n
b2i

can be arbitrarily close to

c0s
2

(s− (i− 1)c0(K − 2)!)2
.

Now, since s can be chosen as large as we want, in order to prove the claim it
is enough to note that

lim
s→∞

c0s
2

(
s− (i− 1)c0(K − 2)!

)2 = lim
s→∞

c0
(
1− (i−1)c0(K−2)!

s

)2 = c0.

Finally, the observation that b1 = ms and 〈c0, c1, c0〉b1 = c0(ms)2 + c1ms+
c0 = n completes the proof of Theorem 3.1.

3.2. Second construction

Since some details in this construction depend on whether c1 = 0 or not, we
need to distinguish two cases.

The case c1 6= 0. Let p and q be two positive integers such that: i) ln p
ln q

/∈ Q;

ii) c0 | pq; iii) pq is even; iv) pq > c1; v) 1 < q
p
<

√
c0+1
c0

. These requirements

are given in order in which they are needed through the proof. We also note
that such numbers indeed exists: one possibility is to take p equal to a multiple
of c0 and take q = p+1, which satisfies the requirements i), ii) and iii), and by
taking such p large enough we can also fulfill iv) and v).

We first show that there exist nonnegative integers g and h such that

1 <
pg

qh
<

√
c0 + 1

c0
.

This means that we need g and h such that

(3) 0 < g ln p− h ln q < ln

√
c0 + 1

c0
.

Since i) states that ln p
ln q

/∈ Q, the sequence ({g ln p
ln q

})g∈N, where {·} denotes the

fractional part, is equidistributed in the interval [0, 1]. Therefore, we can choose
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g ∈ N such that

(4) 0 <

{

g
ln p

ln q

}

<
ln
√

c0+1
c0

ln q
.

Now letting h = ⌊g ln p
ln q

⌋ leads to

g ln p− h ln q = ln q

(

g
ln p

ln q
− h

)

= ln q

(

g
ln p

ln q
−
⌊

g
ln p

ln q

⌋)

= ln q

{

g
ln p

ln q

}

,

and (3) follows by (4).
We now choose large enough positive integer M such that (pq + 1)M >

4(⌈ g+1
2 ⌉+K) + 1, (pq + 1)M > h+ 1 and M > ⌈ g−1

2 ⌉+K. Finally, let

a =
c1(pq)

(pq+1)M

c0

(note that a is an integer because of ii)), and let

n = c0a
2 + c1a+ c0.

We shall now find K bases b1, b2, . . . , bK such that n is a 3-digit palindrome
in all those bases. We take b1 = a, which gives n = 〈c0, c1, c0〉b1 . Let us now
construct K − 1 more bases.

In fact, we shall find such bases that n begins and ends with c0 when written
in each of these bases. Note that the requirement n = 〈c0, f, c0〉b = c0b

2+fb+c0
can be transformed to b(c0b+ f) = n− c0 = a(c0a+ c1). Therefore, any divisor

b of a(c0a+ c1), larger than c0 and c1, such that a(c0a+c1)
b

equals c0b+ f with
0 6 f < b, that is, that

c0b 6
a(c0a+ c1)

b
< (c0 + 1)b,

represents a base that satisfies the requirement. The last double inequality
reduces to

(5)

√

a(c0a+ c1)

c0 + 1
< b 6

√

a(c0a+ c1)

c0
.

Let us show that there indeed exist K − 1 divisors of a(c0a + c1) that satisfy
this inequality.

Recall the following well-known fact (easily proved by induction): if x is an

odd integer and x | y + 1, then xj | yxj−1

+ 1 for each j. Since, by iii), pq + 1
is odd, for x = pq + 1, y = pq and j = M + 1 we get

(6) (pq + 1)M+1 | (pq)(pq+1)M + 1 =
c0a

c1
+ 1.
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We shall now show that for each i such that ⌈ g+5
2 ⌉ 6 i 6 ⌈ g+1

2 ⌉+K there

exist ui, vi such that 0 6 ui, vi 6 (pq + 1)M − 1 and

(7)

√
a(c0a+c1)

c0+1

(pq + 1)i
< puiqvi 6

√
a(c0a+c1)

c0

(pq + 1)i
.

Let i be fixed, ⌈ g+5
2 ⌉ 6 i 6 ⌈ g+1

2 ⌉+K, and let

z =

√

a(c0a+ c1)

(pq + 1)i
.

Then (7) reduces to

(8)
z√

c0 + 1
< puiqvi 6

z√
c0
.

Let w be the largest integer such that (pq)w 6 z√
c0
, that is, w =

⌊
logpq

z√
c0

⌋
.

Since

z√
c0

=

√

a(c0a+ c1)

(pq + 1)i
√
c0

>
a

(pq + 1)i
>

a

(2pq)i
>

a

(pq)2i

=
c1(pq)

(pq+1)M−2i

c0

ii)

> (pq)(pq+1)M−2i−1

(the relation ii) indeed implies that c0 6 pq) and

z√
c0

=

√

a(c0a+ c1)

(pq + 1)i
√
c0

<

√

a(c0a+ pqc0a)

(pq + 1)i
√
c0

=
a
√
c0

(pq + 1)i−
1

2

√
c0

<
a

(pq)i−
1

2

=
c1(pq)

(pq+1)M−i+ 1

2

c0

iv)

6 (pq)(pq+1)M−i+ 1

2
+1 < (pq)(pq+1)M−i+2,

we get

(pq + 1)M − 2i− 1 6 w 6 (pq + 1)M − i+ 1.

Let l = 1 if pwqw+1 6 z√
c0
, and l = 0 otherwise. In any case we have pwqw+l 6

z√
c0

and pwqw+l+1 > z√
c0

(if l = 0 this follows by the choice of l, while if

l = 1 this follows because pwqw+2 > (pq)w+1 > z√
c0
, by the choice of w). If

pwqw+l > z√
c0+1

, we may choose ui = w, vi = w + l, and we have (8), as

needed. Thus, let us assume that pwqw+l 6 z√
c0+1

. We shall now describe

a procedure that starts from the number pwqw+l and repeatedly multiplies it

by a factor less than
√

c0+1
c0

, all the time keeping the exponents of p and q

bounded between 0 and (pq+1)M −1 inclusively; after a finite number of steps
we shall obtain a number greater than z√

c0
. Since in each step the current

number is multiplied by a factor less than
√

c0+1
c0

, and since the leftmost and
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the rightmost side of (8) differ by a factor of
√

c0+1
c0

, this will mean that during

the procedure a number that satisfies (8) is encountered.
We first repeatedly multiply by the factor q

p
(note the bounds v)) until the

exponent of q becomes equal to (pq+1)M−1. Since the sum of the exponents of
p and q remains constant (equal to 2w+ l) during this multiplying, the number
obtained at the end is

(9) p2w+l−(pq+1)M+1q(pq+1)M−1.

Let us check that the exponent of p is nonnegative. Since

w > (pq + 1)M − 2i− 1 > (pq + 1)M − 2

(⌈
g + 1

2

⌉

+K

)

− 1,

we have

2w + l − (pq + 1)M + 1 > (pq + 1)M − 4

(⌈
g + 1

2

⌉

+K

)

− 1 > 0,

where the latter inequality follows by the choice of M . Let us now multiply

the number (9) by pg

qh
only once, and thus get the number

(10) p2w+l−(pq+1)M+1+gq(pq+1)M−1−h.

We check that the exponent of q is nonnegative, and that the exponent of p is
less than or equal to (pq+1)M − 1. The first claim follows immediately by the
choice of M . Regarding the second claim, since

w 6 (pq + 1)M − i+ 1 6 (pq + 1)M −
⌈
g + 5

2

⌉

+ 1

= (pq + 1)M −
⌈
g + 3

2

⌉

,

we have

2w + l − (pq + 1)M + 1+ g 6 (pq + 1)M − 2

⌈
g + 3

2

⌉

+ 1 + 1 + g

6 (pq + 1)M − 2 · g + 3

2
+ 2 + g

6 (pq + 1)M − 1,

as needed. Finally, we multiply the number (10) by q
p
repeatedly h times. We

thus get the number

p2w+l−(pq+1)M+1+g−hq(pq+1)M−1.

Since, by the upper bound for w, we have the inequality

(pq + 1)M − 1 > w + i− 2 > w +

⌈
g + 5

2

⌉

− 2 = w +

⌈
g + 1

2

⌉

> w + 2 > w + l + 1,
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we get

p2w+l−(pq+1)M+1+g−hq(pq+1)M−1

> p2w+l−(pq+1)M+1+g−h+(pq+1)M−1−w−l−1qw+l+1

= pw+g−h−1qw+l+1

> pw+1−1qw+l+1

= pwqw+l+1 >
z√
c0
.

The argument that shows the existence of ui, vi from (7) is thus finished.
Let us now complete the proof. By (7) we get

√

a(c0a+ c1)

c0 + 1
< puiqvi(pq + 1)i 6

√

a(c0a+ c1)

c0

for each i such that ⌈ g+5
2 ⌉ 6 i 6 ⌈ g+1

2 ⌉+K. Since 0 6 ui, vi 6 (pq + 1)M − 1,
by the definition of a and the fact that c0 | pq we get puiqvi | a. Further, since
i 6 ⌈ g+1

2 ⌉+K 6 M + 1, by (6) we get (pq + 1)i | c0a+ c1. Altogether,

puiqvi(pq + 1)i | a(c0a+ c1).

Since there is a total of K−1 values of i in the given range, we have thus found
K − 1 divisors of a(c0a+ c1) for which (5) holds, which was to be done. This
completes the proof in the case c1 6= 0.

The case c1 = 0. The underlying idea is actually very similar in this case,
but much less technically demanding. Let p and q be two positive integers such
that

1 <
q

p
<

(
c0 + 1

c0

) 1

2K−2

,

let

a = (pq)K−1,

and let

n = c0a
2 + c0.

We claim that n is a 3-digit palindrome in each base bi, 1 6 i 6 K, where

bi = pK+i−2qK−i.

As in the previous case, it is enough to show that each bi is a divisor of
a(c0a+ c1) = a2c0 such that

(11) a

√
c0

c0 + 1
< bi 6 a
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(this is the inequality (5) for c1 = 0). And indeed, since K + i − 2 6 2K − 2
and K− i > 0, we get that bi is a divisor of a2, and hence also of a2c0. Further,

bi = pK+i−2qK−i =
(pq)K−1pi−1

qi−1
=

(pq)K−1

(
q
p

)i−1 =
a

(
q
p

)i−1 ,

and thus bi 6 a and

bi >
a

(
q
p

)K−1
>

a
((

c0+1
c0

) 1

2K−2

)K−1
=

a
√

c0+1
c0

= a

√
c0

c0 + 1
,

which proves (11). Finally, the observation that b1 = a and 〈c0, 0, c0〉b1 =
c0a

2 + c0 = n completes the proof of Theorem 3.1. �

3.3. Examples and comparison of the two constructions

In order to make these two constructions easier to grasp, we shall now present
their outputs on two explicit examples. We then compare some of their aspects.

Let us first consider the sequence 〈1, 5, 1〉 and K = 4. For the first con-
struction we first need s that is coprime to 2 and 3, and large enough so that

s− 3 · 1 · 2! > 0 and
⌊

1·s2
(s−3·1·2!)2

⌋
= c0 = 1. The smallest such s is s = 23. The

system (2) becomes m ≡ −55 (mod 21), m ≡ −25 (mod 19) and m ≡ −15
(mod 17), which has the solution m ≡ 2654 (mod 6783). We need m large

enough so that
⌊1·(23m)2+115m+1

(17m)2

⌋
= 1; m = 2654 suffices. We finally set

n = c0(ms)2 + c1ms+ c0 = 3 726 430 975,

for which indeed

n = 〈1, 5, 1〉61042 = 〈1, 11127, 1〉55734 = 〈1, 23473, 1〉50426 = 〈1, 37475, 1〉45118,
where 61042 = 2654 · 23, 55734 = 2654 · 21, 50426 = 2654 · 19 and 45118 =
2654 · 17.

Let us now see what the second construction gives for the same input. Choos-
ing p = 3 and q = 4 fulfills all the requirements. We then may take g = 4 and
h = 3, and after that M = 6. Finally, let

a = 5 · 12136 = 29 653 618 · 34 826 809 · 5 = 28185 · · ·21760
︸ ︷︷ ︸

5 209 003 digits

and

n = a2 + 5a+ 1 = 79441 · · ·06401
︸ ︷︷ ︸

10 418 005 digits

.

For each i such that ⌈ 4+5
2 ⌉ 6 i 6 ⌈ 4+1

2 ⌉ + 4, that is, 5 6 i 6 7, we use
the described procedure in order to find ui, vi for which (7) holds. For i = 5
we first find w = 4 826 804, l = 0, and after a few steps we ultimately get
34 826 801 · 44 826 807 · 135 | a(a + 5); for i = 6 we get w = 4 826 803, l = 0 and
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ultimately 34 826 800 ·44 826 806 ·136 | a(a+5), and for i = 7 we get w = 4 826 802,
l = 0 and ultimately 34 826 799 · 44 826 805 · 137 | a(a+ 5). We conclude:

n = 〈1, 5, 1〉29 653 618·34 826 809·5

= 〈1, 19906 · · ·06864
︸ ︷︷ ︸

5 209 003 digits

, 1〉29 653 614·34 826 801·135

= 〈1, 15179 · · ·59936
︸ ︷︷ ︸

5 209 003 digits

, 1〉29 653 612·34 826 800·136

= 〈1, 10550 · · ·83264
︸ ︷︷ ︸

5 209 003 digits

, 1〉29 653 610·34 826 799·137 .

Since the second construction depends on whether c1 6= 0 or not, we also
check what happens for some example where c1 = 0. Consider the sequence
〈2, 0, 2〉 and K = 4. We then may take p = 15 and q = 16, and after that
a = (15 · 16)3 = 13 824 000. We finally set

n = c0a
2 + c0 = 382 205 952 000 002,

for which indeed

n = 〈2, 0, 2〉13 824 000 = 〈2, 3 571 200, 2〉12960 000

= 〈2, 7 157 280, 2〉12150 000 = 〈2, 10 773 182, 2〉11390 625,

where 13 824 000 = 153 · 163, 12 960 000 = 154 · 162, 12 150 000 = 155 · 16 and
11 390 625 = 156. For the record, the first construction for this input gives

n = 375 223 562 302 052 = 〈2, 0, 2〉13 697 145 = 〈2, 3 374 800, 2〉12879 405

= 〈2, 6 985 440, 2〉12061 665 = 〈2, 10 883 376, 2〉11243 925.

Let us now try to make some conclusions.
Based on the first example, one gets the impression that the second construc-

tion is “worse” than the first one, in the sense that it produces a much larger
value of n than the first construction. However, this is not always the case, as
the second example illustrates. And in fact, if c1 = 0, then for larger values of
K the second construction indeed turns out to produce quite smaller values of
n than the first one: for example, for the sequence 〈2, 0, 2〉 and K = 20, the
second construction produces a 151-digit number n, while the first one pro-
duces a 724-digit number n; for K = 100 we get a 1066-digit n from the second
construction versus a 31394-digit n from the first construction.

Furthermore, the idea the second construction relies on leaves much space
for improvement. Indeed, the core of the construction is finding a number a
such that the number a(c0a + c1) has at least K − 1 divisors b for which the
bounds (5) hold. It seems very plausible that, using some other techniques,
this can be shown to hold for some number a that is much smaller than the
one we proposed here.

Finally, the main motivation for providing two different constructions for the
case d = 3 here is, as we have already mentioned, the belief that this increases
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chances of making some progress on the case d > 3 by some modification of
one of the presented constructions. There is no reason to believe that the
construction that has the biggest chances of being useful for the case d > 3 is
the one that produces the smallest values of n in the case d = 3. In fact, as
we shall see in the following section, there are some arguments that suggest
that for d > 3 the numbers we are looking for become much rarer; thus, it is
not at all impossible that a construction that produces large values in the case
d = 3 can be adapted to be of some use also for d > 3, while the one that
produces small values in the case d = 3 actually only picks some exceptions
whose existence essentially relies on the assumption that d = 3.

4. Some heuristic arguments for the cases of more digits

We present some heuristic reasons that seem to indicate that the situa-
tion might change for d > 3, that is, that not every palindromic sequence
〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, has the property that for any K ∈ N there exists
a number that is a d-digit palindrome simultaneously in K different bases, with
〈cd−1, cd−2, . . . , c0〉 being its digit sequence in one of those bases. For the sake
of simplicity, we present our argument for the sequence 〈1, 0, 0, . . . , 0, 1〉.

Note that the probability that a randomly chosen d-digit integer written in
base b is a palindrome equals 1

b⌊d/2⌋
. Let n = ad−1 + 1 = 〈1, 0, 0, . . . , 0, 1〉a.

Then n is a d-digit number in base b if and only if ⌊ d
√
n⌋+1 6 b 6 a. We want

to estimate for how many of the bases b from this range, apart from b = a, the
number n is a palindrome in base b. Assuming that the probability that n is a
palindrome in base b equals 1

b⌊d/2⌋
for each b from the given range independently,

we get that the expected number of d-digit palindromic expansions of n in base
b, apart from n = 〈1, 0, 0, . . . , 0, 1〉a, equals

a−1∑

b=⌊ d
√
n⌋+1

1

b⌊
d
2
⌋ =

a−1∑

b=
⌊

d
√

ad−1+1
⌋
+1

1

b⌊
d
2
⌋ 6

a−1∑

b=
⌈
a

d−1

d

⌉

1

b⌊
d
2
⌋ .

Therefore, the total number of d-digit palindromic expansions of numbers that
are written as 〈1, 0, 0, . . . , 0, 1〉a in some base a, where a is bounded above by
some bound A, not counting the expansions 〈1, 0, 0, . . . , 0, 1〉a themselves, has
the expected value bounded above by

A∑

a=2

a−1∑

b=
⌈
a

d−1

d

⌉

1

b⌊
d
2
⌋ .

We shall now transform the above expression in a more convenient form. Note

that, if a and b are integers, then b > ⌈a d−1

d ⌉ is equivalent to b > a
d−1

d , which
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is equivalent to a 6 b
d

d−1 , which is equivalent to a 6 ⌊b d
d−1 ⌋. We have

A∑

a=2

a−1∑

b=
⌈
a

d−1

d

⌉

1

b⌊
d
2
⌋ =

A−1∑

b=
⌈
2

d−1

d

⌉

1

b⌊
d
2
⌋

∣
∣
{
a : 2 6 a 6 A and ⌈a d−1

d ⌉ 6 b 6 a− 1
}∣
∣

=
A−1∑

b=2

1

b⌊
d
2
⌋

∣
∣
{
a : 2 6 a 6 A and b+ 1 6 a 6 ⌊b d

d−1 ⌋
}∣
∣

=

A−1∑

b=2

1

b⌊
d
2
⌋

∣
∣
{
a : b+ 1 6 a 6 min{A, ⌊b d

d−1 ⌋}
}∣
∣

=

A−1∑

b=2

min{A, ⌊b d
d−1 ⌋} − (b+ 1) + 1

b⌊
d
2
⌋

=

A−1∑

b=2

min{A, ⌊b d
d−1 ⌋} − b

b⌊
d
2
⌋

6

A−1∑

b=2

b
d

d−1 − b

b⌊
d
2
⌋ =

A−1∑

b=2

1

b⌊
d
2
⌋− d

d−1

−
A−1∑

b=2

1

b⌊
d
2
⌋−1

.

Note that for d > 6 the inequalities ⌊d
2⌋ − d

d−1 > 1 and ⌊d
2⌋ − 1 > 1 hold.

Therefore, for A → ∞ the above value actually converges to

ζ

(⌊
d

2

⌋

− d

d− 1

)

− ζ

(⌊
d

2

⌋

− 1

)

.

This provides some heuristic evidence that for d > 6 there are in fact only
finitely many numbers that are written as 〈1, 0, 0, . . . , 0, 1〉 (a total of d digits)
in some base, and that are d-digit palindromes also in some other base. For
d ∈ {4, 5} the same heuristic suggests that such numbers, though there might
be infinitely many of them, are very rare.

5. Future directions

By “very palindromic” sequences, let us refer to the palindromic sequences
〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, such that for any K ∈ N there exists a num-
ber that is a d-digit palindrome simultaneously in K different bases, with
〈cd−1, cd−2, . . . , c0〉 being its digit sequence in one of those bases. Of course,
the main question in this topic is the following one.

Open problem 1. Characterize all “very palindromic” sequences for d > 3.

If this problem turns out to be too hard, some simpler starting points might
be the following problems.

Open problem 2. Are sequences 〈1, 1, . . . , 1〉 and 〈1, 0, 0, . . . , 0, 1〉 “very palin-
dromic” (for any d, or for each d)?
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Open problem 3. Provide at least a single example of a “very palindromic”
sequence, other than the “known sequences” (for d > 3), or prove that there
are not any. (By “known sequences” we mean the sequences of the form (1),
as well as their multiples by a factor of the form td−1.)

Open problem 4. Provide at least a single example of a palindromic sequence
that is not “very palindromic” (for d > 3), or prove that there are not any.

If palindromic sequences that are not “very palindromic” were found, a
further research direction could be to determine, for a given such sequence,
what the largest K ∈ N is such that there exists a number that is a d-digit
palindrome simultaneously in K different bases, with the given sequence being
its digit sequence in one of those bases. In particular, could such K be equal
to 1 for some sequence? If the answer is affirmative, such sequences can be
intuitively thought of as “very nonpalindromic”, that is, they would be at
exactly the opposite end of the scale in comparison to “very palindromic”
sequences.
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