References
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- M. Baser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285-297. https://doi.org/10.4134/BKMS.2008.45.2.285
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. https://doi.org/10.1090/S0002-9947-1974-0357502-5
- G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. https://doi.org/10.1090/S0002-9947-1974-0357503-7
- J. S. Cheon, E. J. Kim, C. I. Lee, and Y. H. Shin, Characterizations of elements in prime radicals of skew polynomial rings and skew Laurent polynomial rings, Bull. Korean Math. Soc. 48 (2011), no. 2, 277-290. https://doi.org/10.4134/BKMS.2011.48.2.277
- W. Cortes, Skew Armendariz rings and annihilator ideals of skew polynomial rings, Algebraic structures and their representations, 249259, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005.
- W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. (2008), Art. ID 496720, 9 pp.
- D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 22 (1971), 427-433.
- E. Hamann and R. G. Swan, Two counterexamples in power series rings, J. Algebra 100 (1986), no. 1, 260-264. https://doi.org/10.1016/0021-8693(86)90077-3
- C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. https://doi.org/10.1081/AGB-120016752
- C. Y. Hong, N. K. Kim, and Y. Lee, Radicals of skew polynomial rings and skew Laurent polynomial rings, J. Algebra 331 (2011), 428-448. https://doi.org/10.1016/j.jalgebra.2010.12.028
- C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. https://doi.org/10.1142/S100538670600023X
- C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
- N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. https://doi.org/10.1080/00927870600549782
- J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
- T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- T. Y. Lam, A. Leroy, and J. Matcsuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506. https://doi.org/10.1080/00927879708826000
- G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423. https://doi.org/10.1080/00927879908826705
-
J. Matczuk, A characterization of
$\sigma$ -rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336. https://doi.org/10.1081/AGB-200034148 - L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
- A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinburgh Math. Soc. 36 (1993), no. 2, 169-178. https://doi.org/10.1017/S0013091500018319
- K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783-794. https://doi.org/10.1080/00927877708822194
- K. R. Pearson, W. Stephenson, and J. F. Watters, Skew polynomials and Jacobson rings, Proc. London Math. Soc. (3) 42 (1981), no. 3, 559-576.
- J. Ram, On the semisimplicity of skew polynomial rings, Proc. Amer. Math. Soc. 90 (1984), no. 3, 347-351. https://doi.org/10.1090/S0002-9939-1984-0728345-7
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9