DOI QR코드

DOI QR Code

STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS

  • HONG, CHAN YONG (Department of Mathematics and Research Institute for Basic Sciences Kyung Hee University) ;
  • KIM, NAM KYUN (School of Basic Sciences Hanbat National University) ;
  • LEE, YANG (Department of Mathematics Pusan National University)
  • Received : 2013.08.13
  • Published : 2015.06.01

Abstract

In this note we study the structures of power-serieswise Armendariz rings and IFP rings when they are skewed by ring endomor-phisms (or automorphisms). We call such rings skew power-serieswise Armendariz rings and skew IFP rings, respectively. We also investigate relationships among them and construct necessary examples in the process. The results argued in this note can be extended to the ordinary ring theoretic properties of power-serieswise Armendariz rings, IFP rings, and near-related rings.

Keywords

References

  1. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  2. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  3. M. Baser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285-297. https://doi.org/10.4134/BKMS.2008.45.2.285
  4. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  5. G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. https://doi.org/10.1090/S0002-9947-1974-0357502-5
  6. G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. https://doi.org/10.1090/S0002-9947-1974-0357503-7
  7. J. S. Cheon, E. J. Kim, C. I. Lee, and Y. H. Shin, Characterizations of elements in prime radicals of skew polynomial rings and skew Laurent polynomial rings, Bull. Korean Math. Soc. 48 (2011), no. 2, 277-290. https://doi.org/10.4134/BKMS.2011.48.2.277
  8. W. Cortes, Skew Armendariz rings and annihilator ideals of skew polynomial rings, Algebraic structures and their representations, 249259, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005.
  9. W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. (2008), Art. ID 496720, 9 pp.
  10. D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 22 (1971), 427-433.
  11. E. Hamann and R. G. Swan, Two counterexamples in power series rings, J. Algebra 100 (1986), no. 1, 260-264. https://doi.org/10.1016/0021-8693(86)90077-3
  12. C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. https://doi.org/10.1081/AGB-120016752
  13. C. Y. Hong, N. K. Kim, and Y. Lee, Radicals of skew polynomial rings and skew Laurent polynomial rings, J. Algebra 331 (2011), 428-448. https://doi.org/10.1016/j.jalgebra.2010.12.028
  14. C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. https://doi.org/10.1142/S100538670600023X
  15. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  16. N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. https://doi.org/10.1080/00927870600549782
  17. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  18. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
  19. T. Y. Lam, A. Leroy, and J. Matcsuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506. https://doi.org/10.1080/00927879708826000
  20. G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423. https://doi.org/10.1080/00927879908826705
  21. J. Matczuk, A characterization of $\sigma$-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336. https://doi.org/10.1081/AGB-200034148
  22. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
  23. A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinburgh Math. Soc. 36 (1993), no. 2, 169-178. https://doi.org/10.1017/S0013091500018319
  24. K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783-794. https://doi.org/10.1080/00927877708822194
  25. K. R. Pearson, W. Stephenson, and J. F. Watters, Skew polynomials and Jacobson rings, Proc. London Math. Soc. (3) 42 (1981), no. 3, 559-576.
  26. J. Ram, On the semisimplicity of skew polynomial rings, Proc. Amer. Math. Soc. 90 (1984), no. 3, 347-351. https://doi.org/10.1090/S0002-9939-1984-0728345-7
  27. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  28. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9