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VALUE FUNCTION AND OPTIMALITY CONDITIONS

Kyung Eung Kim

Abstract. In the optimal control problem, at first we search the
expected optimal solution by using Pontryagin type’s necessary con-
ditions called the maximum principle. Next we use the sufficient
conditions to conclude that the searched solution is optimal. In this
article the sufficient conditions are studied. The value function is
used for sufficient conditions.

1. Introduction

Let Z be a complete metric space. Consider the controlled system:

minψ(x(T ))

subject to

x′(t) = f(t, x(t), u(t)) a.e. in [0, T ],

u(t) ∈ U(t) a.e. in [0, T ],

x(0) = ξ0,

g(t, x(t)) ≤ 0 ∀t ∈ [0, T ],

where

f : [0, T ]× Rn × Z → Rn,

U : [0, T ] ⇒ Z,

(the symbol ‘⇒’ means that the related function is a set valued function).
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To solve this problem, at first we should find the x(·) which can be
optimal. At this time we use the necessary conditions for optimality
called the maximum principle. See [4] and [6] for this subject. Secondly,
we should verify by the sufficient conditions that the searched solution
is really optimal. In this article we study the sufficient conditions for
optimality by using the value function.

We set

F (t, x) = f(t, x, u(t)),

and assume that

(i) ∀(t, x) ∈ [0, T ]× Rn, F (t, x) is nonempty, convex and compact,
(ii) ∀x ∈ Rn, F (·, x) is measurable,
(iii) ∃m ∈ L1(0, T ) such that for almost all t ∈ [0, T ], ∀x ∈ Rn,

sup
v∈F (t,x)

‖v‖ ≤ m(t)(1 + ‖x‖),

(iv) ∃k ∈ L1(0, T ) such that F (t, ·) is k(t)−Lipschitz a.e. in [0, T ],
(v) g and ψ are continuous.

Some notations are needed:

BR(x) = {y ∈ Rn | ‖y − x‖ ≤ R}

Ω = {(t, x) ∈ [0, T ]× Rn | g(t, x) ≤ 0}

Sg[t0,T ](x0) =

x(·) ∈ AC(t0, T ) |
x′(t) ∈ F (t, x(t)) a.e. [t0, T ],

g(t, x(t)) ≤ 0 ∀t ∈ [t0, T ],
x(t0) = x0

 .

where AC(t0, T ) is the set of absolutely continuous functions from [t0, T ]
to Rn. The value function associated to the above problem is defined
by: for all (t0, x0) ∈ [0, T ]× Rn with g(t0, x0) ≤ 0,

V (t0, x0) = inf
{
ψ (x(T )) | x(·) ∈ Sg[t0,T ](x0)

}
.

We set

V (t, x) = +∞ ∀ (t, x) /∈ Ω,

and define

Dom(V ) = {(t, x) ∈ R× Rn | V (t, x) 6= ±∞} .
See [3] for the properties of the value function. In general, the value
function is not differentiable. Therefore we need to define the more
generalized derivatives and differentials for our purpose.
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Definition 1.1. Let ϕ : Rn → Rn ∪ {∞} be an extended function,
v ∈ Rn, and x0 ∈ Rn such that ϕ(x0) 6=∞. We define:

∂+ϕ(x0) =

{
p ∈ Rn| lim sup

x→x0

ϕ(x)− ϕ(x0)− < p, x− x0 >
‖x− x0‖

≤ 0

}
,

D↑ϕ(x0)(v) = lim inf
h→0+,v′→v

ϕ(x0 + hv′)− ϕ(x0)

h
,

D↓ϕ(x0)(v) = lim sup
h→0+,v′→v

ϕ(x0 + hv′)− ϕ(x0)

h
.

2. Some basic results

Let z ∈ Sg[t0,T ](x0) and set

ϕ(t) = V (t, z(t)) ∀ t ∈ [t0, T ].

Lemma 2.1. Assume that f is continuous and U(·) = U is compact.
If for a constant C > 0 and ρ(t) ∈ Rn, we have

ρ(t) ∈ ∂+V (t, z(t)), ∀ t ∈ [t0, T ],

and

‖ρ(t)‖ ≤ C, ∀ t ∈ [t0, T ],

then there exists a constant M such that

D↑ϕ(t)(1) ≤M, ∀ t ∈ [t0, T ]

Proof. We have

D↑ϕ(t)(1) = lim inf
h→0+,v→1

V (t+ hv, z(t+ hv))− V (t, z(t))

h

= lim inf
h→0+,v→1

V
(
t+ hv, z(t) + h z(t+hv)−z(t)

h

)
− V (t, z(t))

h
.(1)

But, since f is continuous and U(·) = U is compact, there exists M1

such that for all t ∈ [t0, T ],

‖f(t, z(t), u(t))‖ ≤M1.
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Therefore we have

z(t+ h)− z(t)

h
=

1

h

∫ t+h

t

f(s, z(s), u(s))ds

∈ 1

h

∫ t+h

t

M1B1 ds

∈ M1B1.

This implies that there exists a sequence hn → 0+ and ξ ∈ M1B1 such
that

(2)
z(t+ hn)

hn
→ ξ.

Therefore (1) and (2) imply that

D↑ϕ(t)(1) = lim inf
h→0+,v→ξ

V (t+ hv, z(t) + hv)− V (t, z(t))

h

= D↓V (t, z(t))(1, ξ)

≤ < ρ(t), (1, ξ) >

≤ C(1 +M1)

= M.

Lemma 2.2. Suppose that V is lower semi-continuous. Under the
same hypotheses with Lemma 2.1, ϕ(·) is Lipschitz continuous in [t0, T ].

Proof. Consider the set valued function F̄ : R2 ⇒ R2 such that
F̄ (τ, y) = {(1,M)} where M is the constant of Lemma 2.1. Set K =
Ep(ϕ) (see [2] for the definition of Ep ). Note that K is closed. We fix
s ≥ t0. Now we consider the following differential inclusion:

(3)
(τ, y) ∈ F̄ (τ, y)

(τ, y)(0) = (s, ϕ(s)) ∈ K.

By Lemma 2.1 and the fact that

TK(τ, y) ⊃ TK(τ, ϕ(τ)) ∀ y ≥ ϕ(τ)
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(see [2] for the definition of TK ), we have for all (τ, y) ∈ K,

(1,M) ∈ Ep(D↑ϕ(τ))

= TK(τ, ϕ(τ))

⊂ TK(τ, y),

in other words, for all (τ, y) ∈ K,

F̄ (τ, y) ∩ TK(τ, y) = {(1,M)} 6= ∅.

See [2] for the definition of TK . By the viability theorem, there exists a
solution of (3) such that (τ, y)(r) ∈ K for all 0 ≤ r ≤ T − s. But (3)
has only one solution. Therefore

(τ, y) = (s+ r, ϕ(s) +Mr) ∈ K,

in other words,

0 ≤ ϕ(s+ r)− ϕ(s) ≤Mr.

Lemma 2.3. Suppose (i) ∼ (v). Then for all R ≥ 0 and for all
(t0, x0) ∈ Ω, with ‖x0‖ ≤ R, there exists LR ≥ R such that for all
x ∈ Sg[t0,T ](x0) and for all t ∈ [t0, T ],

‖x(t)‖ ≤ LR.

Proof. Let x ∈ Sg[t0,T ](x0). Then for almost all t ∈ [t0, T ],

x′(t) ∈ F (t, x(t)) ⊂ F (t, 0) + k(t)‖x(t)‖B1.

Therefore for all t ∈ [t0, T ],

‖x(t)‖ ≤ ‖x0‖+

∫ t

t0

m(s)ds+

∫ t

t0

k(s)‖x(s)‖ds.

We can apply the Gronwall’s Lemma for the conclusion.

Proposition 2.4. Assume (i) ∼ (v). Furthermore, suppose that
V (t, ·) is LR-Lipschitz on BR(0) ∩ Dom(V (t, ·)) for all t ∈ [t0, T ]. Then
for all (t0, x0) ∈ Dom(V ), for all x ∈ Sg[t0,T ](x0), the function

[t0, T ] 3 t → V (t, x(t))

is absolutely continuous.
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Proof. Let x1 ∈ Sg[t0,T ](x0) and t0 ≤ t1 ≤ t2 ≤ T . Since

V (t0, x0) = inf
{
V (t, x(t)) | x(·) ∈ Sg[t0,T ](x0)

}
,

there exists x2 ∈ Sg[t0,T ](x1(t1)) such that

V (t2, x2(t2)) ≤ V (t1, x1(t1)) + t2 − t1.
By the proof of Lemma 2.3, for all i = 1, 2, we have,

‖xi(t2)− xi(t1)‖ ≤
∫ t2

t1

m(s)ds+

∫ t2

t1

k(s)‖xi(s)‖ds

≤
∫ t2

t1

m(s)ds+ L‖x0‖

∫ t2

t1

k(s)‖xi(s)‖ds.

Therefore

0 ≤ V (t2, x1(t2))− V (t1, x1(t1))

≤ V (t2, x1(t2))− V (t2, x2(t2)) + |t2 − t1|
≤ LR‖x1(t2)− x2(t2)‖+ |t2 − t1|
≤ LR (‖x1(t2)− x1(t1)‖+ ‖x2(t2)− x1(t1)‖) + |t2 − t1|

≤ 2LR

(∫ t2

t1

m(s)ds+ L‖x0‖

∫ t2

t1

k(s)ds

)
+ |t2 − t1|.

By the definition of absolutely continuity, this implies that the function

t 7→ V (t, x(t))

is absolutely continuous.

3. Sufficient conditions

We define the map G for all (t, x) ∈ Ω,

G(t, x) = {v ∈ F (t, x) | D↑V (t, x)(1, v) ≤ 0}.

Theorem 3.1. Under the hypothesis of Proposition 2.4 if

(4)

{
x′(t) ∈ G(t, x(t)) a.e. in [t0, T ]

x(t0) = x0
,

then
V (t0, x0) = ψ(x(T )).

Therefore x(·) is optimal.
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Proof. By the definition of G, we have

x′(t) ∈ F (t, x(t)) a.e. in [t0, T ],

and

g(t, x(t)) ≤ 0 in [t0, T ].

Set

ϕ(t) = V (t,x(t)).

Proposition 2.4 implies that ϕ is absolutely continuous. Hence ϕ is
differentiable almost everywhere. On the other hand ϕ is nondecreasing,
therefore ϕ′ ≥ 0 a.e. Hence to end the proof, it is sufficient to prove that

ϕ′(t) ≤ 0 a.e. in [t0, T ].

The condition (4) implies that there exist hi → 0+ and vi → x′(t) such
that for almost all t ∈ [t0, T ],

0 ≥ D↑V (t, x(t))(1, x′(t))

≥ lim inf
h→0+,v→x′(t)

V (t+ h, x(t) + hv)− V (t, x(t))

h
(5)

≥ lim
i→∞

V (t+ hi, x(t) + hivi)− V (t, x(t))

hi
.

Since for all (t, x) /∈ Dom(V ), V (t, x) =∞, we have for sufficiently large
i,

(t+ hi, x(t) + hivi) ∈ Dom(V )

Fix t ∈ [t0, T ] such that ϕ′(t) exists. Then

ϕ′(t) = lim
h→0+

V (t+ h, x(t) + hv)− V (t, x(t))

h
≤ 0

by (5) and Lipschitz continuity of V (t, ·).

Consider the set valued function: ∀(t, x) ∈ Ω,

Ḡ(t, x) = {f(t, x, u) | u ∈ U(t), ∃(pt, px) ∈ ∂+V (t, x),

pt+ < px, f(t, x, u) >≥ 0}.

Definition 3.2. Let y : [t0, T ]→ Rn. For all t ∈ [t0, T ), we define

Dy(t) = Limsups→t+
y(s)− y(t)

s− t
(see [2] for the definition of Limsup).
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Definition 3.3. We say that a continuous function y : [t0, T ] → Rn

is a contingent solution of the system:

(6)
x′(t) ∈ Ḡ(t, x(t)),
x(t0) = x0,

if

Dy(t) ∩ Ḡ(t, y(t)) 6= ∅, ∀ t ∈ [t0, T ).

Proposition 3.4. Suppose that U(·) = U is compact and f is contin-
uous. If z is a contingent solution of (6), then z is Lipschitz continuous.

Proof. Let R = sup{|f(t, z(t), u)| | u ∈ U, t ∈ [t0, T ]}. Consider
the viability problem:

s′(t) = 1, s(t0) = t0,

y′(t) = B̄R, y(t0) = x0,

(s(t), y(t)) ∈ Graph(z) ∀ t ∈ [t0, T ].

By the viability theorem and the fact that z is a contingent solution of
(6), the above problem has a solution. We have s(t) = t and y is R-
Lipschitz continuous. Since z(t) = y(t), z is also Lipschitz continuous.

Theorem 3.5. Under the assumptions of Proposition 3.4 if z is a
contingent solution of the system (6), then z is optimal.

Proof. By Proposition 3.4, z is Lipschitz continuous and therefore z
is differentiable almost everywhere. Therefore we have

z′(t) ∈ Ḡ(t, z(t)) ⊂ f(t, z(t), U) a.e. in [t0, T ].

By applying Theorem 8.2.9 of [2], z is also a trajectory of the dynam-
ical system. Set ϕ(t) = V (t, z(t)). Since z is a contingent solution,
∂+V (t, z(t)) 6= ∅ for all t ∈ [t0, T ). Therefore by the definition of Ḡ, for
all t ∈ [t0, T ), for all v ∈ Dz(t)∩ Ḡ(t, z(t)), for all (pt, px) ∈ ∂+V (t, z(t)),

D↑ϕ(t)(1) ≤ D↓V (t, z(t))(1, v) ≤< (pt, px), (1, v) >= 0.

By Lemma 2.2, ϕ(·) is 0-Lipschitz continuous. Therefore

V (t, z(t)) = ϕ(t) = ϕ(t0) = V (t0, x0), ∀ t ∈ [t0, T ].

In other words, z is optimal.
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