DOI QR코드

DOI QR Code

Effect of Tillage Depths on Methane Emission and Rice Yield in Paddy Soil during Rice Cultivation

논토양에서 경운방법이 메탄발생과 쌀수량에 미치는 영향

  • Cho, Hyeoun-Suk (Crop Production and Physiology Research Division, NICS, RDA) ;
  • Seo, Myung-Chul (Crop Production and Physiology Research Division, NICS, RDA) ;
  • Park, Tea-Sun (Crop Production and Physiology Research Division, NICS, RDA) ;
  • Kang, Hang-Won (Upland Crop Breeding Research Division, Department of Southem Area, NICS, RDA)
  • 조현숙 (농촌진흥청 국립식량과학원) ;
  • 서명철 (농촌진흥청 국립식량과학원) ;
  • 박태선 (농촌진흥청 국립식량과학원) ;
  • 강항원 (농촌진흥청 국립식량과학원 남부작물부)
  • Received : 2014.12.01
  • Accepted : 2015.05.19
  • Published : 2015.06.30

Abstract

Green manure crops are organic materials that can supply organic matter and substitute chemical fertilizer, yet emit methane while being decomposed. Therefore, we experimented with different kinds of Green manure crops and tillage depth in order to decrease the amount of methane emitted when utilizing Green manure crops in paddy soil. The amount of methane emitted during the cultivation period of rice started to increase after transplanting and peaked at 63, and 74 days after transplanting, than decreased to almost none starting from 106 days. According to the kind of Green manure crop, it was highest in barley, then hairy vetch and chemical fertilizer. Depending on the tillage depth, the amount of methane emitted decreased by 22.5% in chemical fertilizer, 12.4% in hairy vetch and 11.7% in barley in 20cm tillage compared to 10cm tillage. The air temperature of methane test period was $30{\sim}40^{\circ}C$, and the soil temperature was more than about $2{\sim}10^{\circ}C$ lower than the air temperature. Due to the irrigation started before transplanting, the oxidation-reduction potential (Eh) of soil was rapidly reduced, and showed negative (-) values. Eh values mostly kept the range of -300~-500 mV during rice cultivation. It rapidly increased 106 days after transplanting. Rice yield the highest in hairy vetch and did not show differences according to tillage depth. Methane emission could be effectively reduced if the paddy soil was tilled by 20 cm during the application of hairy vetch.

농경지의 볏짚 수거량이 증가하면서 부족한 유기물을 공급하기 위하여 녹비작물을 이용하고 있다. 녹비작물은 유기물공급과 화학비료 대체가 가능한 우수한 유기물원이다. 그러나 농경지에서 분해되는 과정에 메탄을 발생시키기 때문에 메탄발생량을 줄이기 위한 노력이 요구된다. 따라서 논토양에서 녹비작물을 이용할 때 메탄발생량을 줄이기 위하여 경운깊이를 달리하여 시험하였다. 벼 생육기간 중 메탄 발생량은 이앙 후 63일, 74일에 가장 많았고 이앙 후 74일 이후부터 감소되었으며 이앙 후 106일에는 거의 발생되지 않았다. 녹비종류에 따른 메탄발생량은 보리환원구에서 가장 많았고, 그 다음은 헤어리베치, 화학비료 순이었다. 경운 깊이에 따른 메탄발생량은 10cm경운보다 20 cm로 경운함으로써 화학비료는 22.5%, 헤어리베치 환원구는 12.4%, 보리환원구는 11.7% 감소되었다. 벼 재배기간 동안 대기온도는 $30{\sim}40^{\circ}C$였고, 지온은 대기온도보다 약 $2{\sim}10^{\circ}C$정도 낮았다. 산화환원전위(Eh)는 이앙 전 관개를 시작하면서 급격히 토양이 환원되어 (-)값을 나타냈다. 작물 재배기간 동안 산화환원전위차는 -300~-500 mV으로 낮았으며 관개가 중단된 이앙 후 106일 이후에는 다시 급격하게 증가되었다. 쌀 수량은 경운깊이에 따른 차이는 없었으나 녹비작물중에서는 헤어리베치 환원구에서 가장 많았다. 논토양에서 헤어리베치를 이용할 때 20cm로 경운하여 메탄발생을 효과적으로 줄일 수 있었다.

Keywords

References

  1. Ali, M. A., M. A. Sattar, M. N. Islam, and K. Inubushi. 2014. Integrated effects of organic inorganic and biological amendments on methane emission, soil quality and rice productivity in irrigated paddy ecosystem of Bangladesh: field study of two consecutive rice growing seasons, Plant Soil 378 : 239-252. https://doi.org/10.1007/s11104-014-2023-y
  2. Kim, G. Y., S. B. Lee, J. S. Lee, E. J. Choi, J. H. Ryu, W. J. Park, and J. D. Choi. 2012. Mitigation of greenhouse gases by water management of SRI(System of Rice Intensification) in rice paddy field, Koeran J. Soil Sci.Fert. 45(6) : 1173-1178. https://doi.org/10.7745/KJSSF.2012.45.6.1173
  3. Kim, G. Y., J. Gutierrez, H. C. Jeong, J. S. Lee, M. D. M. Haque, and P. J. Kim, 2014, Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation, J. korean Soc. Appl. Biol. Chem. 57(2) : 229-236. https://doi.org/10.1007/s13765-013-4298-8
  4. Kim, M. T., J. H. Ku, W. T. Jeon, K. Y. Seong, C. Y. Park, J. H. Ryu, H. S. Cho, I. S. Oh, Y. H. Lee, J. K. Lee, M. Park, and U. G. Kang. 2011. Effect of barley green manure on rice growth and yield according to tillage date in spring, Korea. J. Crop Sci Vol. 56(2) : 119-123 (in Korean). https://doi.org/10.7740/kjcs.2011.56.2.119
  5. Jeon, W. T., K. Y. Seong, J. K. Lee, M. T. Kim, and H. S. Cho. 2009. Effects of seeding rate on hairy vetch (Viciavillosa)- Rye (Secalecereale) mixtures for green manure production in upland soil. Korea J. Crop Sci. Vol. 54(3) : 327-331 (in Korean).
  6. Lim, S. S., W. J. Choi, and H. Y. Kim. 2012. Fertilizer and organic inputs effects on $CO_2$ and $CH_4$ emission from a soil under changing water regimes, Korean J. Environ. Agric., Vol 31(2) : 104-112. https://doi.org/10.5338/KJEA.2012.31.2.104
  7. Neue, H. U. and R. Sass. 1994. Trace gas emissions from rice fields in: prinn R(ed). Global atmospheric-biospheric chemistry Plenum Press, New york. pp. 119-1483.
  8. NIAST. 2000. Analytical methods of soil and plant. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  9. Nouchi, I. 1994. Mechanism of methane transport though rice plants $CH_4$ and $N_2O$, pp. 86-104.
  10. Pandey, A., V. T. Mai, D. Q. Vu, T. P. L. Bui, T. L. A. Mai, L. S. Jensen, and A. D. Neergaard. 2014. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in vietnam, Agriculture, Ecosystems and environment 196 : 137-146. https://doi.org/10.1016/j.agee.2014.06.010
  11. Patrick, W. H. Jr. 1981. The role of inorganic redox systems in controlling reduction in paddy soils. In: Proc. Symp. Paddy Soil, Science Press, Beijing, China, Springer-Verlag:107-117.
  12. Pramanik, P., M. D. M. Haque, S. Y. Kim, and P. J. Kim. 2014. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season, Science of the total Environment 490 : 622-628. https://doi.org/10.1016/j.scitotenv.2014.05.046
  13. Rath, A. K., B. Swian, B. Ramarkrishnam, D. Panda, T. K. Adhya, V. R. Rao, and N. Sethunathan. 1999. Influence of fertilizer manuregement and water regime on methane emission from rice fields, Agriculture, Ecosystems and Environment 76 : 99-107. https://doi.org/10.1016/S0167-8809(99)00080-8
  14. RDA (Rural Development Administration). 2003. Standard measurement and analysis in agricultural research and development, RDA, Suwon, Korea.
  15. Roh, K. A., H. C. Jeong, G. Y. Kim, K. H. So, K. M. Shim, D. S. Lee, and Y. H. Kim. 2010. Estimation of carbon sequestion and methane emission with organic amendment application at agricultural soil in korea, Korean J. Soil. Fert., pp. 156-157 (in Korean).
  16. Shin, Y. K. and K. S. Kim. 1994. Methods for measurement of methane and nitrous oxide emissions from agricultural fields, Korea J. Environ. Agric. Vol 13(3) : 359-372 (in Korean).
  17. Song, B. H., K. A. Lee, W. T. Ieon, M. T. Kim, H. S. Cho, I. S. Oh, C. G. Kim, and U. G. Kang. 2010. Effects of green manure crops of legume and gramineae on growth responses and yields in rice cultivation with respect to environment friendly agriculture. J. Crop Sci. 55(2) : 144-150 (in Korean).
  18. Wang, Z. P., R. D. Delaune, P. H. Masscheleyn, and Jr. W. H. Patrick. 1993. Soil redox and pH effects on methane production in a flooded rice soil, Soil Soc. Am. J. 57 : 382-385. https://doi.org/10.2136/sssaj1993.03615995005700020016x
  19. Yagi, K., K. Minami, and Y. Ogawa. 1990. Effects of water percolation on methane emission from paddy field, NIAES Res. Rep. Div. Environ. Planning. 6 : 105-122.
  20. Yamana, I. and K. Sato. 1964. Decomposition of glucose and gas formation in flooded soil, Soil Sci. Plant Nutri. 10 : 27-133.
  21. Yang, C. H., J. H. Ryu, T. K. Kim, S. B. Lee, J. D. Kim, N. H. Baek, W. Y. Choi, and S. J. Kim. 2009. Effect of green manure crops incorporation with rice cultivation on soil fertility improvement in paddy field. Korean Soc. Soil Sci. Fert. 42(5) : 166-173 (in Korean).
  22. Yuan, Q., J. Pump, and R. Conrad. 2014. Straw application in paddy soil enhances methane production also from other carbon sources, Biogeosciences 11 : 237-246. https://doi.org/10.5194/bg-11-237-2014