DOI QR코드

DOI QR Code

학교운동장 피복물질 간의 온열효과 비교 - 율전초등학교를 대상으로 -

Comparison of Thermal Effects of Different School Ground Surface Materials - A Case of Yooljeon Elementary School-

  • LIM, Joong-Bin (Dept. of Landscape Architecture, Sungkyunkwan University) ;
  • YU, Jinhang (Dept. of Landscape Architecture, Sungkyunkwan University) ;
  • LEE, Ju-Yeol (Dept. of Landscape Architecture, Sungkyunkwan University) ;
  • LEE, Kyoo-Seock (Dept. of Landscape Architecture, Sungkyunkwan University)
  • 투고 : 2015.03.03
  • 심사 : 2015.04.10
  • 발행 : 2015.06.30

초록

마사토가 학교 운동장 피복재료로 많이 사용되어 왔고 일부에서는 천연잔디를 사용해 왔으나 최근에는 인조잔디가 많이 사용되기 시작하고 있으며 서울의 경우 174개교의 운동장에 인조잔디가 설치되었고, 미국에서는 인조잔디를 시공한 곳이 운동장뿐 아니라 공원에 이르기까지 3,500곳 이상이 된다. 이러한 인조잔디 사용의 증가로 인해 인조잔디가 주변 환경에 미치는 영향은 많이 연구된 것에 비해 인조잔디가 주변 미기후에 미치는 영향은 한국에서는 많이 연구되지 않고 있다. 그러므로 본 연구의 목적은 학교 운동장에 시공되는 세가지 포장재료가 - 인조잔디, 천연 잔디 및 마사토 - 각각 주변에 미치는 기온저감 및 열환경 영향을 조사하여 학교운동장 계획에 유용한 정보를 제공하는 데에 있다. 본 연구에서는 전산유체역학기법(Computational Fluid Dynamics, CFD) 시뮬레이션을 이용하여 세 가지 포장재료에서의 기온 및 열쾌적지수(Predicted Mean Vote, PMV) 시뮬레이션 결과를 도출하여 현장 관측 기온 값과 비교하였다. 2011년 7월 20일 14시 30분 주간의 기온 저감효과는 천연잔디가 인조잔디와 마사토포장과 비교하여 가장 높게 나타났다. 야간에도 23시 30분에 기온 저감 효과가 나타났지만 주간보다는 크지 않았다. PMV효과도 역시 천연잔디가 인조잔디와 마사토포장보다 주간보다 크게 나타났으나 야간에는 별 차이가 없었다. 본 연구결과 인조잔디가 기온 저감효과 및 열쾌적성 효과가 가장 낮게 나타나 학교운동장 계획 시 이와 같은 열환경 효과를 고려할 필요가 있다고 판단되었다.

Granite soil has been used traditionally as a school playground surface. Natural turf has also been used in some schools. Recently artificial turf has come into common use instead of granite soil or natural turf. Artificial turf playgrounds are used at 174 schools in Seoul, Korea. More than 3,500 artificial turf fields are installed in the United States. Because of the increase of artificial turf usage, there are many studies about the estimation of artificial turf effects to environment. Compared with artificial turf material effects such as characterization of substances released from material, and recognition of volatility of heavy metal into the surrounding environment - air or the percolating rainwater -, less studies for thermal effects of artificial turf playground have been done. Especially, the corresponding studies in Korea are few. Thus, the purpose of this research is to compare the thermal effects of artificial turf on school playground between natural turf and granite soil. In this study, air temperature and Predicted Mean Vote (PMV) were compared in three scenarios by Computational Fluid Dynamics (CFD) model. Additionally, the results were validated through a field measurement. Air temperature decreasing effects by natural turf are greater than those by artificial turf and granite soil at 14:30 on 20th, July 2011. It shows the same decreasing effects at 23:30. However, the difference is less than that of daytime. PMV differences between natural turf and the other two surface covers are large at daytime while those are much less at nighttime. Consequently, air temperature and PMV of artificial turf are the highest among three school playground surface pavements.

키워드

참고문헌

  1. Alcoforado, M.J., H. Andrade, A. Lopes and J. Vasconcelos. 2009. Application of climatic guidelines to urban planning: the example of Lisbon(Portugal), Landscape and Urban Planning 90(1-2):56-65. https://doi.org/10.1016/j.landurbplan.2008.10.006
  2. ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers). 2009. Thermal Comfort, ASHRAE Handbook. Atlana, GA, USA.
  3. Bae, M.W. and S.B. Kim. 2012. A study on temperature changes for land-cover of an urban park, Journal of Nakdong River Environmental Research Institute 16(1):59-80 (배민욱, 김수봉. 2012. 도시 공간 토지피복에 따른 온도변화 연구 - 달성공원을 중심으로-. 환경과학논집 16(1):59-80).
  4. Beighle, A., C.F. Morgan, G.L. Masurier and R.P. Pangrazi. 2006. Children's physical activity during recess and outside of school. Journal of School Health 76(10):516-520. https://doi.org/10.1111/j.1746-1561.2006.00151.x
  5. Berkovic, S., A. Yezioro and A. Bitan. 2012. Study of thermal comfort in courtyards in a hot arid climate. Solar Energy 86(5):1173-1186. https://doi.org/10.1016/j.solener.2012.01.010
  6. Bonan, G.B. 2000. The microclimates of a suburban Colorado (USA) landscape and implications for planning and design. Landscape and Urban Planning 49(3-4):97-114. https://doi.org/10.1016/S0169-2046(00)00071-2
  7. Bruse, M. and H. Fleer. 1998. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software 13(3-4):373-384. https://doi.org/10.1016/S1364-8152(98)00042-5
  8. Carnielo, E. and M. Zinzi. 2013. Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Building and Environment 60:56-65. https://doi.org/10.1016/j.buildenv.2012.11.004
  9. Chen, L. and E. Ng. 2012. Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118-125. https://doi.org/10.1016/j.cities.2011.08.006
  10. Chen, L. and E. Ng. 2013. Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: a case study in Hong Kong. Architectural Science Review 56(4):297-305. https://doi.org/10.1080/00038628.2012.684871
  11. Cheng, H., Y. Hu and M. Reinhard. 2014. Environmental and health impacts of artificial turf: a review. Environmental Science & Technology 48(4):2114-2129. https://doi.org/10.1021/es4044193
  12. Cheng, V., E. Ng, C. Chan and B. Givoni. 2012. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International Journal of Biometeorology 56(1):43-56. https://doi.org/10.1007/s00484-010-0396-z
  13. Chow, W.T.L. and A.J. Brazel. 2012. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Building and Environment 47:170-181. https://doi.org/10.1016/j.buildenv.2011.07.027
  14. Egerhazi, L., N. Kantor and T. Gal. 2013. Evaluation and modelling the microbioclimatological conditions of a popular playground in Szeged, Hungary. International Review of Applied Sciences and Engineering 4(1):57-61. https://doi.org/10.1556/IRASE.4.2013.1.8
  15. Eliasson, I. 2000. The use of climate knowledge in urban planning. Landscape and Urban Planning 48(1-2):31-44. https://doi.org/10.1016/S0169-2046(00)00034-7
  16. Fahmy, M. and S. Sharples. 2009. On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment 44(9):1907-1916. https://doi.org/10.1016/j.buildenv.2009.01.010
  17. ISO(International Organization for Standardization). 1994. ISO Standard 7730, Moderate Thermal Environments : Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort. Geneva, International Organization for Standardization.
  18. Johns, D.P. and A.S. Ha. 1999. Home and recess physical activity of Hong Kong children. Research Quarterly for Exercise and Sport 70(3):319-323. https://doi.org/10.1080/02701367.1999.10608051
  19. Korea Meteorological Administration. 2011a. Annual climatological report.
  20. Korea Meteorological Administration. 2011b. Monthly weather report, 28.
  21. Lee, C.S. and N.H. Ryu. 2010. The influence of landscape pavements on the WBGT of outdoor spaces without ventilation or shade at summer midday. Journal of Korean Institute of Landscape Architecture 38(2):1-8 (이 춘석, 류남형. 2010. 조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 -통풍과 차광이 배제된 하절기 주간의 조건에서-. 한국조경학회지 38(2):1-8).
  22. Lee, S.H., K.S. Lee, W.C. Jin and H.K. Song. 2009. Effect of an urban park on air temperature differences in a central business district area. Landscape and Ecological Engineering 5(2):183-191. https://doi.org/10.1007/s11355-009-0067-6
  23. Li, X. L., W. Berger, C. Musante and M.I. Mattina. 2010. Characterization of substances released from crumb rubber material used on artificial turf fields. Chemosphere 80(3):279-285. https://doi.org/10.1016/j.chemosphere.2010.04.021
  24. Lim, E.N., W.S. Lee, C.H. Choi, B.G. Song and S.G. Jung. 2013. An evaluation of thermal comfort on urban neighborhood park for improving thermal environment. Journal of the Korean Association of Geographic Information Studies 16(4): 153-170 (임은나, 이우성, 최철현, 송봉근, 정성관. 2013. 도시근린공원의 열환경 개선을 위한 열쾌적성 평가. 한국지리정보학회지 16(4):153-170). https://doi.org/10.11108/kagis.2013.16.4.153
  25. Little, I. 2008. Synthetic turf. Environmental Health Perspectives 116(3):116-122. https://doi.org/10.1289/ehp.116-a116
  26. Middel, A., K. Hab, A.J. Brazel, C.A. Martin and S. Guhathakurta. 2014. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landscape and Urban Planning 122:16-28. https://doi.org/10.1016/j.landurbplan.2013.11.004
  27. Moon, S.Y. and D.H. Jang. 2012. A study on the thermal comfort change according to the planting type in housing complex. Journal of Korea Institute of Ecological Architecture and Environment 12(2):65-75 (문수영, 장대희. 2012. 공동주택 단지 내 식재유형에 따른 온도저감 효과 연구, 한국생태환경건축학 회논문집 12(2):65-75).
  28. Muller, N., W. Kuttler, and A.B. Barlag. 2014. Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology 115(1-2):243-257. https://doi.org/10.1007/s00704-013-0890-4
  29. Ng, E., L. Chen, Y.N. Wang and C. Yuan. 2012. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Building and Environment 47:256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
  30. Nikolopoulou, M., N. Baker and K. Steemers. 2001. Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy 70(3):227-235. https://doi.org/10.1016/S0038-092X(00)00093-1
  31. Oke, T.R. 1987. Boundary Layer Climates(2ed). New York. 298pp.
  32. Ole, F.P. and J. Toftum. 2002. Extension of the PMV model to non-airconditioned buildings in warm climates. Energy and Buildings 34(6):533-536. https://doi.org/10.1016/S0378-7788(02)00003-8
  33. Park, K.Y., S.W. Lee and H.Y. Hwang. 2012. Analysis on the mitigation effects of heat island phenomenon in apartment complex through creation of green network: a case study of Yeol-Mae Village apt in Daejeon's Noeun district. Journal of Environmental Policy and Administration 20(3):27-50 (박기용, 이선우, 황희연. 2012. 그린네트워크 구축을 통한 공동주택단지 내 열섬현상 저감효과 분석 : 대전시 노은지구 열매마을아파트를 중심으로. 환경정책 20(3):27-50).
  34. Park, S.K. 2012. Landscape planning and design methods with human thermal sensation. Journal of Korean Institute of Landscape Architecture 40(1):1-11 (박수국. 2012. 인간 열환경 지수(Human Thermal Sensation)를 이용한 조경계획 및 디자인 방법. 한국조경학회지 40(1):1-11). https://doi.org/10.9715/KILA.2012.40.1.001
  35. Park, S.K. 2013. A way for creating human bioclimatic maps using human thermal sensation(comfort) and applying the maps to urban and landscape planning and design. Journal of Korean Institute of Landscape Architecture 41 (1):21-33 (박수국. 2013. 인간 열환경 지수를 이용한 생기후지도 작성 및 도시.조경 계획 및 디자인에의 적용방안. 한국조경학회지 41(1):21-33). https://doi.org/10.9715/KILA.2013.41.1.021
  36. Peng, L.L.H. and C.Y. Jim. 2013. Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 6(2):598-618. https://doi.org/10.3390/en6020598
  37. Perini, K. and A. Magliocco. 2014. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening 13(3):495-506. https://doi.org/10.1016/j.ufug.2014.03.003
  38. Seoul Metropolitan Office of Education. 2012. School Grounds reate and Maintain Management Guidebook.
  39. Shashua-Bar, L., D. Pearlmutter and E. Erell. 2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning 92(3-4):179-186. https://doi.org/10.1016/j.landurbplan.2009.04.005
  40. Shen, T., D.H.C. Chow and J. Darkwa. 2013. Simulating the influence of microclimatic design on mitigating the urban heat island effect in the Hangzhou metropolitan area of China. International Journal of Low-Carbon Technologies
  41. Song, B.G. and G.H. Park. 2012. Analysis of heat island characteristics considering urban space at nighttime. Journal of the Korean Association of Geographic Information Studies 15(1): 133-143 (송봉근, 박경훈. 2012. 도시공간을 고려한 야간시간대의 열섬특성분석. 한국지리정보학회지 15(1):133-143). https://doi.org/10.11108/kagis.2012.15.1.133
  42. Song, B.G., K.H. Park and S.G. Jung. 2014. Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of the Korean Association of Geographic Information Studies 17(2):156-172 (송봉근, 박경훈, 정성관. 2012. 토지이용 유형별 공간특성을 고려한 ENVImet 모델의 현장측정자료 기반의 검증. 한국지리정보학회지 17(2):156-172). https://doi.org/10.11108/KAGIS.2014.17.2.156
  43. Taleb, D. and B. Abu-Hijleh. 2013. Urban heat islands: potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE. Renewable Energy 50:747-762. https://doi.org/10.1016/j.renene.2012.07.030
  44. Taleghani, M., D.J. Sailor, M. Tenpierik and A. van den Dobbelsteen. 2014a. Thermal assessment of heat mitigation strategies: the case of Portland State University, Oregon, USA. Building and Environment 73:138-150. https://doi.org/10.1016/j.buildenv.2013.12.006
  45. Taleghani, M., L. Kleerekoper, M. Tenpierik and A. van den Dobbelsteen. 2015. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment 83(2015):65-78. https://doi.org/10.1016/j.buildenv.2014.03.014
  46. Taleghani, M., M. Tenpierik, A. van den Dobbelsteen and D.J. Sailor. 2014b. Heat in courtyards: a validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Solar Energy 103(2014):108-124. https://doi.org/10.1016/j.solener.2014.01.033
  47. Yaghoobian, N., J. Kleissl and E.S. Krayenhoff. 2010. Modeling the thermal effects of artificial turf on the urban environment. Journal of Applied Meteorology and Climatology 49(3):332-345. https://doi.org/10.1175/2009JAMC2198.1
  48. Yahia, M.W. and E. Johansson. 2014. Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria : the example of residential spaces with detached buildings. Landscape and Urban Planning 125(2014):1-16. https://doi.org/10.1016/j.landurbplan.2014.01.014
  49. Yang, X.S., L.H. Zhao, M. Bruse and Q.L. Meng. 2012, An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings 54:243-251. https://doi.org/10.1016/j.enbuild.2012.07.042
  50. Yang, X.S., L.H. Zhao, M. Bruse and Q.L. Meng. 2013. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment 60:93-104. https://doi.org/10.1016/j.buildenv.2012.11.008
  51. Yoon, Y.H., S.H. Park, W.T. Kim and J.H. Kim. 2014. Analyses on comparison of UTCI, PMV, WBGT between playground and green space in school. Korean Journal of Environment and Ecology 28(1):80-89 (윤용한, 박승환, 김원태, 김정호. 2014. 학교 운동장과 녹지공간의 UCIT, PMV, WBGT 비교분석. 한국환경생태학회지 28(1):80-89). https://doi.org/10.13047/KJEE.2014.28.1.80
  52. Zask, A., E. van Beurden, L. Barnett, L.O. Brooks and U.C. Dietrich. 2001. Active school playgrounds : myth or reality? results of the "move it groove it" project. Preventive Medicine 33(5):402-408. https://doi.org/10.1006/pmed.2001.0905
  53. Statistics Korea. 2012. http://stat.kosis.kr/statHtml_host/statHtml.do?orgId=611&tblId=DT_A600001&conn_path=I3.
  54. http://earth.google.com.
  55. http://map.daum.net.

피인용 문헌

  1. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China vol.124, 2017, https://doi.org/10.1016/j.buildenv.2017.08.024
  2. Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort vol.11, pp.11, 2015, https://doi.org/10.3390/atmos11111144