DOI QR코드

DOI QR Code

Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers

3차원 광경화성 수지와 폴리아세테이트 수지의 레이저 접합해석

  • Choi, Hae Woon (Dept. of Mechanical and Automotive Engineering, Keimyung Univ.) ;
  • Yoon, Sung Chul (Graduate School of Mechanical Engineering, Keimyung Univ.)
  • 최해운 (계명대학교 기계자동차공학과) ;
  • 윤성철 (계명대학교 대학원 기계공학과)
  • Received : 2015.03.11
  • Accepted : 2015.05.02
  • Published : 2015.07.01

Abstract

In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

본 논문에서는 격자가 있는 광경화성수지와 폴리아세테이트 수지의 레이저 접합해석에 대한 실험적 결과와 컴퓨터시뮬레이션 결과를 비교분석하였다. 3차원 격자형상은 MJM 방식의 3D 프린터를 사용하였고, 접합은 다이오드 레이저를 사용하였다. 5Watt ~ 7Watt 범위에서 경계면에 조사된 레이저는 유리천이온도에 도달 후 상면의 격자사이로 침투되어 기계적인 접합이 이루어졌다. 컴퓨터 시뮬레이션 결 과, 분포 온도를 통해서 열유동방향을 예측할 수 있었으며 분석을 통해서 접합의 원리를 이해할 수 있었다. 접합실험에서 최대 입열조건인 고출력 저속에서의 2scan 접합이 최소 입열조건이 저출력 고속 조건의 4 scan 보다는 훨씬더 효과적인 것으로 나타났고, 일정수준(Threshold) 이상의 최소에너지 즉, 유리천이온도 이상이 되어야만 효과적인 것을 알 수가 있었다.

Keywords

References

  1. Schricker, K., Stambke, M., Bergmann, J. P., Brautingam, K. and Henckell, P., 2014, "Macroscopic Surface Structures for Polymer-Metal Hybrid Joints Manufactured by Laser Based Thermal Joining," Physics Procedia, Vol. 56, pp. 782-790. https://doi.org/10.1016/j.phpro.2014.08.086
  2. Ageorges, C., Ye, L. and Hou, M., 2001, "Advancesin Fusion Bonding Techniques for Joining Thermoplastic Matrix Composites: a Review," Composites Part A, Vol. 32, pp. 839-857. https://doi.org/10.1016/S1359-835X(00)00166-4
  3. Chun, D. M., Davaasure, G., Ngo, C., Kim, C. S., Lee, H. Y. and Ahn, S. H, 2014, "Fabrication of Transparent Superhydrophobic Surface on Thermoplastic Polymer Using Laser Beam Machining and Compression Molding for Mass Production," CIRP Annals - Manufacturing Technology, Vol. 63, pp. 525-528. https://doi.org/10.1016/j.cirp.2014.03.085
  4. Riveiro, A., Soto, R., Comesana, R., Boutinguiza, M., Quintero, F., Lusquinos, F. and Pou, J., 2014 "Laser Surface Modification of Ultra-high-molecular- Weight Polyethylene (UHMWPE) for Biomedical Applications," Surface Science, Vol. 302, pp. 236-242. https://doi.org/10.1016/j.apsusc.2014.02.130
  5. Song, C. H. and Choi, H., 2014, "Laser Energy Optimization for Dissimilar Polymer Joining," KWJS, Vol. 32, No. 4, pp. 63-69.
  6. Yoon, S. C., Ma, J. K., Bang, D. W. and Choi, H. W., 2014, "A Study on Joining of 3D Thermoset and Biodegradable Polymers," KWJS, Vol. 32, No. 4, pp. 37-42.

Cited by

  1. Analysis of Heat Transfer by Various Laser Beam Patterns in Laser Material Process vol.17, pp.5, 2018, https://doi.org/10.14775/ksmpe.2018.17.5.037