DOI QR코드

DOI QR Code

Approximate Multi-Objective Optimization of a Quadcopter through Proportional-Integral-Derivative Control

PID 제어를 통한 쿼드콥터 다중목적 근사최적설계

  • Received : 2014.12.19
  • Accepted : 2015.04.16
  • Published : 2015.07.01

Abstract

In this study, the nondominated sorting genetic algorithm (NSGA-II) is used to obtain the optimized proportional-integral-derivative (PID) gain value that can quickly recover the motion of a quadcopter after a disturbance. Prior to PID control, the four-rotor quadcopter interval was defined using computational fluid dynamics (CFD). Through the definition of this model, the PID control algorithm was generated. To construct a response surface model, D-optimal programming was used for the generation of experimental points. For this purpose, a gain value that satisfies both the roll and altitude PID gain values is obtained. Using the NSGA-II, the gain value of shorten time of the quadcopter motion control can be optimized.

본 연구는 비지배 분류 유전알고리즘(NSGA-II)을 이용하여 흐트러진 쿼드콥터의 자세를 빠르게 회복 할 수 있는 최적화된 PID(Proportional-Integral-Derivative) 이득 값을 얻고자 하였다. PID 제어에 앞서 로터가 4 개로 이루어진 쿼드콥터의 간격을 전산유체해석을 통해 정의하였으며, 정의된 쿼드콥터 모델을 통하여 PID 제어 알고리즘을 생성하였다. 반응표면 모델을 생성하기 위해 실험계획법의 하나인 D-최적계획법 이용하여 실험점을 배치 시킨 후 반응표면모델을 생성하였다. Roll 과 Altitude 의 두 값을 동시에 만족할 수 있는 PID 의 이득 값을 NSGA-II 를 통해 쿼드콥터의 최단 시간의 자세제어를 할 수 있는 최적의 이득 값을 얻을 수 있었다.

Keywords

References

  1. Thipuopas, C., 2010, "Survey of Micro air Vehicles in an International Even & Utilization in Thailand," The First TSME International Conference on Mechanical Engineering.
  2. Yun, J, H., Ko, J. C. and Lee, J., 2012, "Aerodynamic Performance Analysis of Fan-Bladed Rotors in Tandem Arrangement," The Korean Society of Mechnical Engineers, pp.311-334.
  3. Punds, P., Mahony, R. and Corke, P., 2010, "Modelling and Control of a Large Quadrotor Robot," Control Engineering Practice, Vol.18, No.7, pp. 691-699. https://doi.org/10.1016/j.conengprac.2010.02.008
  4. Aleksandrov, D. and Penkov, I., 2013, "Optimization of Lift Force of Mini Quad Rotor Helicopter by Changing of Gap Size Between Rotors," Solid State Phenomena, Vol.198, pp.226-231. https://doi.org/10.4028/www.scientific.net/SSP.198.226
  5. Yun, J. H. and Lee, J., 2014, "Effect of Rotor-Rotor Interactions in Aerodynamic Performance of Multirotor Air Vehicle," 6th European Conference on Computational Fluid Dynamics(ECFD VI),
  6. Naidoo, Y., Stopforth, R. and Bright, G., 2011, "Quad-rotor Unmanned Aerial Vehicle Helicopter Modelling & Control," Int. J Adv Robotics System, Vol.8, No.4, pp.139-149
  7. Bresciani, T., 2008, "Modelling, Identification and Control of a Quadrotor Helicopter," Department of Automatic control, Lund University.
  8. Naidoo, Y., Stopforth, R. and Bright, G., 2004, "Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control," 2011, International Journal of advanced Robotic System, Vol. 8, No. 4, pp. 139-149.
  9. Ali, I., Radice, G.. and Kim, J. 2010, "Backstepping Control Design with Actuator Torque Bound for Spacecraft Attitude Maneuver," Journal of Guidance, Control and Dynamics, Vol.33, No.1, pp.254-259. https://doi.org/10.2514/1.45541
  10. Altug, E., Ostrowski, J. P. and Mahony,R., 2002, "Control of a Quadrotor Helicopter Using Visual Feedback," In Robotics and Automation, IEEE International Conference on, Vol. 1 pp.72-77.
  11. Hong, K. J., Jeon, K. K., Cho. Y. S., Choi, D. H. and Lee, S. J., 2000, "A Study on the Construction of Response Surface for Design Optimization," Trans. Korean Soc. Mech. Eng. A, Vol.24, No. 6, pp. 1408-1418. https://doi.org/10.22634/KSME-A.2000.24.6.1408
  12. Deb, K., Pratap, A., Agarwal, S. and Meyarian, T., 2002, "A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II," Evolutionary Computaion, IEEE Transactions on, Vol.6, No.2, pp.182-197. https://doi.org/10.1109/4235.996017

Cited by

  1. Altitude and roll control of a hovering quad-rotor air vehicle using the multi-objective approximate optimization of proportional–integral–differential control vol.49, pp.10, 2017, https://doi.org/10.1080/0305215X.2016.1265201