Abstract
Jacket matrices which are defined to be $m{\times}m$ matrices $J^{\dagger}=[J_{ik}^{-1}]^T$ over a Galois field F with the property $JJ^{\dagger}=mI_m$, $J^{\dagger}$ is the transpose matrix of element-wise inverse of J, i.e., $J^{\dagger}=[J_{ik}^{-1}]^T$, were introduced by Lee in 1984 and are used for Digital Signal Processing and Coding theory. This paper presents some square matrices $A_2$ which can be eigenvalue decomposed by Jacket matrices. Specially, $A_2$ and its extension $A_3$ can be used for modifying the properties of hyperbola and hyperboloid, respectively. Specially, when the hyperbola has n times transformation, the final matrices $A_2^n$ can be easily calculated by employing the EVD[7] of matrices $A_2$. The ideas that we will develop here have applications in computer graphics and used in many important numerical algorithms.
Jacket 행렬은 1984년 이문호 교수에 의해 소개되어 신호처리 및 코딩이론에 사용되는 $J^{\dagger}=[J_{ik}^{-1}]^T$인 행렬로서, Galois field F에서 $J^{\dagger}$가 J의 원소별 역행렬일 때 $JJ^{\dagger}=mI_m$의 특성을 갖는 $J=[J_{ik}]$인 $m{\times}m$ 정방행렬이다. 본 논문에서는 Jacket 행렬에 의해 고유 값으로 분해될 수 있는 정방행렬 $A_{2^n}$을 제안하였다. 특히 $A_2$와 그의 확장인 $A_3$ 행렬을 가지고 쌍곡선과 쌍곡면의 성질을 수정하는데 각각 적용할 수 있음을 보였다. 특히 쌍곡선이 n배의 정보량을 갖게 되면 $A_2$ 행렬의 EVD[7]를 이용하여 최종 행렬 $A_2^n$을 쉽게 계산할 수 있다. 또한 여기서 제안한 알고리즘을 가지고 컴퓨터 그래픽에서의 응용 프로그램과 수치해석에서도 이용될 수 있음을 보였다.