DOI QR코드

DOI QR Code

위해평가 및 모니터링 수행을 위한 표본크기 추정연구: 식품 중 중금속 모니터링 데이터를 중심으로

Sample Size Estimation for Risk Assessment and Monitoring Based on Heavy Metal Monitoring Data from Food Items

  • 강희승 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 고아라 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 정다현 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 하미라 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 황명실 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 홍진환 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 황인균 (식품의약품안전평가원 식품위해평가부 식품위해평가과) ;
  • 윤혜정 (식품의약품안전평가원 식품위해평가부 오염물질과)
  • Kang, Hui Seung (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Ko, Ahra (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Jeong, Da-Hyun (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Ha, Mira (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Hwang, Myung-Sil (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Hong, Jin-Hwan (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Hwang, In Gyun (Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation) ;
  • Yoon, Hae-Jung (Food contaminants Division, National Institute of Food and Drug Safety Evaluation)
  • 투고 : 2014.09.20
  • 심사 : 2015.03.16
  • 발행 : 2015.06.30

초록

본 연구에서는 기존에 수행된 식품 중금속 모니터링 데이터를 이용하여 위해평가 및 모니터링을 수행할 때 요구되는 표본 수를 추정하고자 하였다. 중금속 3종 (카드뮴, 납 및 수은)과 17개의 식품을 대상으로 2,400개의 모니터링 데이터를 선정하여 연구에 활용하였다. 기존의 연구에서 수행된 모니터링 데이터의 표준편차와 오차범위 및 신뢰구간 값(95, 99% CI)을 활용하여 표본 수 추정공식에 따라 계산하였다. 표본 수 추정 공식에 따라 표본 크기를 추정한 결과, 95% 신뢰구간에서 카드뮴의 경우 계산된 표본의 크기는 최소 8개에서 최대 90개, 납의 경우 최소 7개에서 최대 1,062개, 수은의 경우 최소 11개에서 최대 238개로 각각 추정되었다. 식품 중 중금속 데이터의 표준 편차와 오차범위가 표본 수를 추정하는데 가장 큰 영향을 주는 것으로 나타났다. 본 연구에서는 모니터링 데이터의 특성을 반영하여 표본 크기를 추정하고자 하였으며, 이는 향후 위해평가 및 모니터링 수행 계획을 수립하기 위한 표본 수를 결정하는 기초연구로 활용될 수 있을 것이다.

This study aimed to calculate the required sample size to monitor food items during risk assessment studies. Based on a data set from a previous study (2,400 data points for heavy metal assessment from 17 food items), the required sample size was estimated by using a single equation with the standard deviation value, error range, and 95%-99% confidence intervals. The required sample size was calculated with each of the heavy metals for the assessment. The results showed that cadmium, lead, and mercury of required sample sizes for further monitoring were range of 7-90, 7-1, 062, and 11-238, respectively. We found that the required sample size varied depending on the standard deviation of the previous monitoring data. This study provides a basic method to determine the minimum sample size required in food monitoring to devise practical sampling strategies.

키워드

참고문헌

  1. International Programme on Chemical Safety (IPCS): Principles and Methods for the Risk Assessment of Chemicals in Food, EHC 240. pp. 2-3-4 (2009).
  2. Jeong K.K., Hwang M.S., Jeong J.Y., Eom J.H., Jeong Y.K., Jo M.Y., Yoon H.J.: Study for developing integrated risk assessment technology of heavy metal. Korea Food and Drug Administration, Osong, pp. 1-151 (2011).
  3. WHO: Global Environment Monitoring System (GEMS/food), 1976. Available from: http://www.who.int/foodsafety/databases/en/. Accessed July 30, (2014).
  4. Cohen, J.: statistical power analysis for the behavioral sciences, 2nd edition, Lawrence Erlbaum Associates, Publisher, Hillsdale, New York, pp.1-590 (1988).
  5. Kim H.Y., Kim J.C., Kim S.Y., Lee J.H., Jang Y.M., Lee M.S., Park J.S., Lee K.H.: Monitoring of Heavy Metals in Fishes in Korea - As, Cd, Cu, Pb, Mn, Zn, Total Hg -. Korean J. Food Sci. Technol., 39, 353-359 (2007).
  6. Choi H., Park S.K., Kim M.H.: Risk Assessment of Mercury through Food Intake for Korean Population. Korean J. Food Sci. Technol., 44, 106-113 (2012). https://doi.org/10.9721/KJFST.2012.44.1.106
  7. Kim H.Y., Kim J.I., Kim J.C., Park J.E., Lee K.J., Kim S.I., Oh J.H., Jang Y.M.: Survey of heavy metal contents of circulating agricultural products in Korea. Korea. J. Food Sci. Technol., 41, 238-244 (2009).
  8. Kwon H.J.: A study on the integrated exposure to hazardous materials for safety control. Korea Food and Drug Administration, Osong, pp. 1-2174 (2012).
  9. WHO: Reliable Evaluation of Low-Level Contamination of Food. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/1557.htm. Accessed July 15, (2014).
  10. Allan G. Bluman: Elementary statistics: A step by step approach, seventh edition. McGraw-Hill Inc., Higher education, New York, pp. 1-897 (2009).
  11. Taylor, J.K.: Statistical techniques for data analysis. CRC Press, New York, USA. pp. 1-216 (1990).
  12. Lee H.Y.: A Study on the Sample Size Estimation. Journal of Basic Science. 11, 109-119 (1993).
  13. Conover, W.J.: Practical Nonparametric Statistics; Wiley. New York. pp. 1-584 (1998).
  14. Lee C.H., Kang H.M., Sim S.Y.: An implementation of the sample size and the power for testing mean and proportion, Journal of the Korean data & information science society, 23, 53-61 (2012). https://doi.org/10.7465/jkdi.2012.23.1.053
  15. Sim S.Y., Choi K.H.: An implementation of sample size and power calculations in testing differences of normal means, Journal of the Korean data & information science society, 24, 477-485 (2013). https://doi.org/10.7465/jkdi.2013.24.3.477
  16. Lee H.J., Kim Y.S., Park I.: Calculation of sample size in clinical trials, Clinics in shoulder and elbow, 16, 53-57 (2013). https://doi.org/10.5397/CiSE.2013.16.1.53
  17. Park S.I., Oh T.H.: Sample size calculation in medical research, J. Vet. Clin., 29, 68-77 (2012).
  18. Lui, K.J., Lin, C.D.: Sample size determination for cluster randomization phase II trials of dichotomous data, Statistical Methodology, 5, 474-485 (2008). https://doi.org/10.1016/j.stamet.2007.11.003
  19. Chung C.E.: Complex sample design effects and inference for Korea National Health and Nutrition Examination Survey data, Korean J Nutr., 45, 600-612 (2012). https://doi.org/10.4163/kjn.2012.45.6.600