DOI QR코드

DOI QR Code

State-based Peridynamic Modeling for Dynamic Fracture of Plane Stress

평면응력 문제의 상태 기반 페리다이나믹 동적파괴 해석 모델링

  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.)
  • 하윤도 (군산대학교 조선해양공학과)
  • Received : 2015.04.06
  • Accepted : 2015.04.14
  • Published : 2015.06.30

Abstract

A bond-based peridynamic model has been shown to be capable of analyzing many of dynamic brittle fracture phenomena. However, there have been issued limitations on handling constitutive models of various materials. Especially, it assumes bonds act independently of each other, so that Poisson's ratio for 3D model is fixed as 1/4 as well as taking only account the bond stretching results in a volume change not a shear change. In this paper a state-based peridynamic model of dynamic brittle fracture is presented. The state-based peridynamic model is a generalized peridynamic model that is able to directly use a constitutive model from the standard theory. It permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. Thus, the volume and shear changes of the material can be reproduced by the state-based peridynamic theory. For a linearly elastic solid, a plane stress model is introduced and the damage model suitable for the state-based peridynamic model is discussed. Through a convergence study under decreasing the peridynamic nonlocal region($\delta$-convergence), the dynamic fracture model is verified. It is also shown that the state-based peridynamic model is reliable for modeling dynamic crack propagatoin.

결합 기반 페리다이나믹 모델을 통해 다양한 동적취성파괴 현상을 해석할 수 있었지만, 결합 기반 모델은 다양한 재료 구성 모델을 표현하는데 여러 한계를 보여왔다. 특히 결합 기반 모델은 각 결합들이 서로 독립적으로 작용하도록 가정하였기 때문에 3차원 모델에서 포아송비가 1/4로 고정되며 전단 변형이 표현되지 못하고 체적 변형만이 모사되는 문제점이 있다. 본 연구에서는 상태 기반 페리다이나믹 모델을 통한 동적취성파괴 해석을 제시한다. 상태 기반 모델은 일종의 일반화된 페리다이나믹 모델로서 일반적인 재료 구성모델로부터 직접 페리다이나믹 재료 모델을 구성한다. 또한 연결된 모든 결합의 변형을 통해 각 절점의 재료 응답이 결정되기 때문에 체적 및 전단 변형이 모두 표현된다. 본 논문에서는 선형 탄성체에 대해서 상태 기반 평면 응력 페리다이나믹 모델을 소개하고 상태 기반 모델에 적합한 손상 모델에 대해 논의한다. 페리다이나믹 비국부 영역을 축소시키는 $\delta$-수렴성 연구를 통해 동적파괴 모델을 검증하고 상태 기반 모델이 동적 균열 전파를 모델링하는데 적합함을 확인하였다.

Keywords

References

  1. Bobaru, F., Ha, Y.D., Hu, W. (2012) Damage Progression from Impact in Multilayered Glass Modeled with Peridynamics, Central European J. Eng., 2(4), pp.551-561.
  2. Doll, W. (1975) Investigations of the Crack Branching Energy, Int. J. Fract., 11, pp.184-186. https://doi.org/10.1007/BF00034729
  3. Ha, Y.D., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, Int. J. Fract., 162(1-2), pp. 229-244. https://doi.org/10.1007/s10704-010-9442-4
  4. Ha, Y.D., Bobaru, F. (2011) Characteristics of Dynamic Brittle Fracture Captured with Peridynamics, Eng. Fract. Mech., 78(6), pp. 1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
  5. Ha, Y.D., Cho, S (2011) Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.637-643.
  6. Ha, Y.D., Cho, S (2012) Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-reinforced Composites: Study on Asymmetrically Loading State, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp. 279-292. https://doi.org/10.7734/COSEIK.2012.25.4.279
  7. Hu, W., Ha, Y.D., Bobaru, F. (2011) Modeling Dynamic Fracture and Damage in Fiber-Reinforced Composites with Peridynamics, Int. J. Multiscale Comput. Eng., 9(6), pp.707-726. https://doi.org/10.1615/IntJMultCompEng.2011002651
  8. Hu, W., Ha, Y.D., Bobaru, F. (2012) Peridynamic Model for Dynamic Fracture in Uidirectional Fiber-Reinforced Composites, Comput. Methods Appl. Mech. & Eng., 217, pp.247-261.
  9. Le, Q.V., Chan, W.K., Schwartz, J. (2014) A Two-Dimensional Ordinary, State-based Peridynamic Model for Linarly Elastic Solids, Int. J. Numer. Methods Eng., 98, pp. 547-561. https://doi.org/10.1002/nme.4642
  10. Ravi-Chandar, K., Knauss, W.G. (1984) An Experimental Investigation into Dynamic Fracture: IV. On the Interaction of Stress Waves with Propagating Cracks, Int. J. Fract., 26, pp.189-200. https://doi.org/10.1007/BF01140627
  11. Silling, S.A. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech.& Phys. Solids, 48, pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  12. Silling, S.A., Askari, E. (2005) A Meshfree Method based on the Peridynamic Model of Solid Mechanics, Comput. & Struct., 83, pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
  13. Silling, S.A., Epson, M., Weckner, O., Xu, J., Askari, E. (2007) Peridynamic States and Constitutive Modeling, J. Elast., 88, pp. 151-84. https://doi.org/10.1007/s10659-007-9125-1