DOI QR코드

DOI QR Code

Improvement of Beam-Quality Evaluation Method for Medical Linear Accelerator Using Magnetic Field

  • Kim, Jeongho (Department of Radiation Oncology, Konyang University Hospital) ;
  • Han, Manseok (Department of Radiology, Kangwon National University) ;
  • Yoo, Sejong (Department of Radiology, Konyang University Hospital) ;
  • Kim, Kijin (Department of Radiology, Konyang University Hospital) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies)
  • Received : 2015.04.03
  • Accepted : 2015.06.15
  • Published : 2015.06.30

Abstract

Beam-quality of medical linac evaluations vary by diverse factors. Because conventional beam-quality evaluation methods yield fragmentary results, a new beam-evaluation method is suggested, and its feasibility is evaluated. The PDDs (percentage depth doses) of 6 MV (Mega-voltage) and 10 MV photon, R (Range) of a 6 MeV (Mega Electron-voltage) and 9 MeV electron were measured and compared with the conventional evaluation methods, and the improved methods $PDD^{10}{_5}$, $PDD^{20}{_{10}}$, $PDD^{30}{_{20}}$, $PDD^{20}{_5}$, $PDD^{30}{_{10}}$, and $R^{70}{_{50}}$, $R^{50}{_{30}}$, $R^{70}{_{30}}$ as the magnetic field of the bending magnet was changed to +2% to -2%, and the results were compared. The comparison showed that the improved methods exhibit a higher discrimination than the conventional methods in each energy regime. $PDD^{10}{_5}$, $PDD^{30}{_{20}}$, $PDD^{30}{_{10}}$ and $R^{70}{_{50}}$, $R^{50}{_{30}}$ should be applied. These methods exhibit a higher discrimination in each energy regime than conventional beam-quality evaluation methods; therefore, they should be used for beam-quality evaluation according to the magnetic field variation.

Keywords

References

  1. C. Z. Kazmark, International Journal of Radiation Oncology, Biology, Physics 13, 1599 (1987). https://doi.org/10.1016/0360-3016(87)90331-2
  2. American Association of Physicists in Medicine, Physical Aspects of Quality Assurance in Radiation Therapy 13 (1984).
  3. S. E. Griffiths, C. A. Short, C. S. Jackson, and D. Ash, Radiotherapy: Principles to Practice, Churchill Livingstone, London (1995) pp. 27-88.
  4. S. S. Kang, I. H. Ko, and G. J. Kim, Radiation Therapeutics, Chung-gu munhwasa, Seoul (2014) pp. 63-98.
  5. F. M. Khan, The Physics of Radiation Therapy, Wolters Kluwer, Toronto (2010) pp. 132-211.
  6. Korea Food & Drug Administration, Quality assurance for dosimetry in radiotherapy (2007).
  7. Korea Institute of Nuclear Safety, The Survey on the Status of Nuclear Industries 5 (1999).
  8. Ministry of Science and Technology, Development of 3-Dimensional Dosimetry Technique for Therapeutic Radiation (2012).
  9. R. N. Lee, S. J. Lee, and J. H. Choi, Medical Physics 14, 20 (2003).
  10. D. Baltas, K. Geramani, G. T. Ioannidis, K. Hierholz, B. Rogge, C. Kolotas, K. Muller-Sievers, N. Milickovic, B. Kober, and N. Zamboglou, International Journal of Radiation Oncology, Biology, Physics 43, 653 (1999). https://doi.org/10.1016/S0360-3016(98)00423-4
  11. K. H. Cho, S. H. Lee, J. H. Choi, D. O. Shin, J. S. Jang, C. K. Min, D. H. Choi, Y. H. Kim, E. S. Kim, and S. I. Kwon, 2006 Korean Society of Medical Physics Spring Conference, 3469 (2006).
  12. H. D. Huh, S. H. Kim, S. J. Cho, D. O. Shin, S. I. Kwon, H. J. Kim, W. C. Kim, and J. J. Loh, The Journal of the Korean Society for Therapeutic Radiology and Oncology 4, 23 (2005).
  13. International Atomic Energy Agency, Calibration of Brachy Therapy Sources 1079 (1999).
  14. R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, and J. F. Williamson, Medical Physics 24, 1557 (1997). https://doi.org/10.1118/1.597966
  15. H. Takeda and D. Dowell, Nuclear Instruments Methods and Physics Research A 331, 384 (1993). https://doi.org/10.1016/0168-9002(93)90076-T
  16. D. C. Jolly, Physics Letters 107A, 231 (1985).
  17. A. E. D. Heylen and K. A. Bunting, International Journal of Electronics 31, 9 (1971). https://doi.org/10.1080/00207217108938195
  18. H. K. Oh, Proceedings of the Optical Society of Korea Annual Meeting 2001, 124 (2001).
  19. S.-C. Zhang and J. N. Elgin, Physics Letters A 198, 89 (1995). https://doi.org/10.1016/0375-9601(95)00014-T
  20. M. T. Kim, H. K. Lee, Y. C. Heo, and J. H. Cho, J. Magn. 19, 15 (2014). https://doi.org/10.4283/JMAG.2014.19.1.015

Cited by

  1. The Effects of Nonmagnetic Bolus on Contralateral Breast Skin Dose during Tangential Breast Irradiation Therapy vol.21, pp.1, 2016, https://doi.org/10.4283/JMAG.2016.21.1.133