DOI QR코드

DOI QR Code

Experimental analyses of dynamical systems involving shape memory alloys

  • Enemark, Soren (Technical University of Denmark, Department of Mechanical Engineering) ;
  • Savi, Marcelo A. (Universidade Federal do Rio de Janeiro, COPPE-Department of Mechanical Engineering) ;
  • Santos, Ilmar F. (Technical University of Denmark, Department of Mechanical Engineering)
  • 투고 : 2013.09.05
  • 심사 : 2014.05.16
  • 발행 : 2015.06.25

초록

The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA springs are incorporated in a dynamical system that consists of a one degree of freedom oscillator connected to a linear spring and a mass, which is also connected to the SMA spring. Two types of springs are investigated defining two distinct systems: a pseudoelastic and a shape memory system. The characterisation of the springs is evaluated by considering differential calorimetry scanning tests and also force-displacement tests at different temperatures. Free and forced vibration experiments are made in order to investigate the dynamical behaviour of the systems. For both systems, it is observed the capability of changing the equilibrium position due to phase transformations leading to hysteretic behaviour, or due to temperature changes which also induce phase transformations and therefore, change in stiffness. Both situations are investigated by promoting temperature changes and also pre-tension of the springs. This article shows several experimental tests that allow one to obtain a general comprehension of the dynamical behaviour of SMA systems. Results show the general thermo-mechanical behaviour of SMA dynamical systems and the obtained conclusions can be applied in distinct situations as in rotor-bearing systems.

키워드

참고문헌

  1. Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2), 025008. https://doi.org/10.1088/0964-1726/19/2/025008
  2. Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2013), "Experimental investigation of vibration reduction using shape memory alloys", J. Intel.Mat. Syst. Str., 24(2), 247-261. https://doi.org/10.1177/1045389X12461696
  3. Alam, M.S., Nehdi, M. and Youssef, M.A. (2008), "Shape memory alloy-based smart rc bridges: overview of state-of-the-art", Smart Struct. Syst., 4(3), 367-389. https://doi.org/10.12989/sss.2008.4.3.367
  4. Bernardini, D. and Rega, G. (2005), "Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators", Math. Comput. Model., 11(3), 291-314. https://doi.org/10.1080/13873950500076404
  5. Casciati, S. and Hamdaoui, K. (2008), "Experimental and numerical studies toward the implementation of shape memory alloy ties in masonry structures", Smart Struct. Syst., 4(2), 153-169. https://doi.org/10.12989/sss.2008.4.2.153
  6. Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
  7. Dhanalakshmi, K., Avinash, A., Umapathy, M. and Marimuthu, M. (2010), "Experimental study on vibration control of shape memory alloy actuated flexible beam", Int. J. Smart Sens. Intell. Syst., 3(2), 156-175.
  8. dos Santos, B.C. and Savi, M.A. (2009), "Nonlinear dynamics of a nonsmooth shape memory alloy oscillator", Chaos Soliton. Fract., 40(1), 197-209. https://doi.org/10.1016/j.chaos.2007.07.058
  9. Lagoudas, D.C. ( Ed). (2008), Shape memory alloys: modeling and engineering applications, Springer.
  10. Lees, A.W., Jana, S., Inman, D.J. and Cartmell, M.P. (2007), "The control of bearing stiffness using shape memory", Proceesings of the International Symposium on Stability Control of Rotating Machinery.
  11. Machado, L.G., Lagoudas, D.C. and Savi, M.A. (2009), "Lyapunov exponents estimation for hysteretic systems", Int. J. Solids Struct., 46(6), 1269- 1286. https://doi.org/10.1016/j.ijsolstr.2008.09.013
  12. Machado, L.G. and Savi, M.A. (2003), "Medical applications of shape memory alloys.", Brazilian journal of medical and biological research Revista brasileira de pesquisas medicas e biologicas Sociedade Brasileira de Biofisica et al, 36(6), 683-691.
  13. Nagaya, K., Takeda, S., Tsukui, Y. and Kumaido, T. (1987), "Active control method for passing through critical speeds of rotating shafts by changing stiffnesses of the supports with use of memory metals", J. Sound Vib., 113(2), 307- 315. https://doi.org/10.1016/S0022-460X(87)80217-1
  14. Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: A review", J. Intel. Mat. Syst. Str., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
  15. Paiva, A. and Savi, M.A. (2006), "An overview of constitutive models for shape memory alloys", Math. Probl. Eng., 2006, 1-30.
  16. Phillips, J.W. and Costello, G.A. (1972), "Large deflections of impacted helical springs", J. Acoust. Soc. Am., 51(3), 967-973. https://doi.org/10.1121/1.1912946
  17. Savi, M.A., De Paula, A.S. and Lagoudas, D.C. (2011), "Numerical investigation of an adaptive vibration absorber using shape memory alloys", J. Intel. Mat. Syst. Str., 22(1), 67-80. https://doi.org/10.1177/1045389X10392612
  18. Savi, M.A. and Pacheco, P.M.C.L. (2002a), "Chaos and hyperchaos in shape memory systems", Int. J. Bifurcat. Chaos, 12(3), 645-657. https://doi.org/10.1142/S0218127402004607
  19. Savi, M.A. and Pacheco, P.M.C.L. (2002b), "Chaos in a shape memory two-bar truss", Int. J. Nonlinear Mech., 37(8), 1387-1395. https://doi.org/10.1016/S0020-7462(02)00029-X
  20. Savi, M.A., Sa, M.A., Paiva, A. and Pacheco, P.M.C.L. (2008), "Tensile-compressive asymmetry influence on shape memory alloy system dynamics", Chaos Soliton. Fract., 36(4), 828-842. https://doi.org/10.1016/j.chaos.2006.09.043
  21. Silva, L.C., Savi, M.A. and Paiva, A. (2013), "Nonlinear dynamics of a rotordynamic nonsmooth shape memory alloy system", J. Sound Vib., 332(3), 608-621. https://doi.org/10.1016/j.jsv.2012.09.018
  22. Sitnikova, E., Pavlovskaia, E., Ing, J. and Wiercigroch, M. (2012), "Suppressing nonlinear resonances in an impact oscillator using smas", Smart Mater. Struct., 21(7), doi:10.1088/0964-1726/21/7/075028.
  23. Sitnikova, E., Pavlovskaia, E., Wiercigroch, M. and Savi, M.A. (2010), "Vibration reduction of the impact system by an sma restraint: numerical studies", Int. J. Nonlinear Mech., 45(9), 837-849. https://doi.org/10.1016/j.ijnonlinmec.2009.11.013
  24. Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13. https://doi.org/10.12989/sss.2011.7.1.001
  25. Torra, V., Isalgue, A., Auguet, C., Carreras, G., Lovey, F.C., Soul, H. and Terriault, P. (2009), "Damping in civil engineering using sma. the fatigue behavior and stability of cualbe and niti alloys", J. Mater. Eng. Perform., 18(5-6), 738-745. https://doi.org/10.1007/s11665-009-9442-6
  26. Williams, K., Chiu, G. and Bernhard, R. (2002), "Adaptive-passive absorbers using shape memory alloys", J. Sound Vib., 249(5), 835-848. https://doi.org/10.1006/jsvi.2000.3496

피인용 문헌

  1. Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading vol.82, 2016, https://doi.org/10.1016/j.ijplas.2016.03.005
  2. Using 0–1 test to diagnose chaos on shape memory alloy dynamical systems vol.103, 2017, https://doi.org/10.1016/j.chaos.2017.06.016
  3. Experimental study on the aeroelastic behavior of a typical airfoil section with superelastic shape memory alloy springs 2017, https://doi.org/10.1177/1045389X17721024
  4. Investigation of Gas Foil Bearings With an Adaptive and Non-Linear Structure vol.13, pp.1, 2015, https://doi.org/10.2478/ama-2019-0001
  5. Simultaneous Measurements in Shape Memory Alloy Springs to Enable Structural Health Monitoring by Self-Sensing Actuation vol.46, pp.6, 2021, https://doi.org/10.1007/s13369-020-05259-y