References
- A. T. Ali, Special Smarandache curves in the Euclidean space, International Journal of Mathematical Combinatorics, 2 (2010), 30-36.
-
A. T. Ali, Position vectors of curves in the Galilean space
$G_3$ , Matematicki Vesnik, 64(3) (2012), 200-210. - B. Divjak and Z. Milin Sipus, Minding's isometries of ruled surfaces in Galilean and pseudo-Galilean space, J. Geom., 77 (2003), 35-47. https://doi.org/10.1007/s00022-003-1646-6
-
B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space
$G_3$ , Glasnik Matematicki, 22(42) (1987), 449-457. - E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage Algebra Geom., 38(2) (1997), 261-288.
- E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66 (1909), 517-557. https://doi.org/10.1007/BF01450047
- I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, New York, 1979.
- M. Turgut and S. Yilmaz, Smarandache curves in Minkowski space-time, International Journal of Mathematical Combinatorics, 3 (2008), 51-55.
- M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.
- O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Institut fur Math. und Angew. Geometrie, Leoben, 1984.
- D.J. Struik, Lectures in Classical Differential Geometry, Addison,-Wesley, Reading, MA, 1961.
- X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design, 20 (2003), 303-317. https://doi.org/10.1016/S0167-8396(03)00074-8
Cited by
- Spacelike and timelike admissible Smarandache curves in pseudo-Galilean space vol.24, pp.3, 2016, https://doi.org/10.1016/j.joems.2015.09.001
- Computation of Smarandache curves according to Darboux frame in Minkowski 3-space vol.25, pp.4, 2017, https://doi.org/10.1016/j.joems.2017.05.004