DOI QR코드

DOI QR Code

SMARANDACHE CURVES OF SOME SPECIAL CURVES IN THE GALILEAN 3-SPACE

  • ABDEL-AZIZ, H.S. (Dept. of Math., Faculty of Science, Sohag Univ.) ;
  • KHALIFA SAAD, M. (Dept. of Math., Faculty of Science, Sohag Univ.)
  • Received : 2014.10.20
  • Accepted : 2015.04.14
  • Published : 2015.06.25

Abstract

In the present paper, we consider a position vector of an arbitrary curve in the three-dimensional Galilean space $G_3$. Furthermore, we give some conditions on the curvatures of this arbitrary curve to study special curves and their Smarandache curves. Finally, in the light of this study, some related examples of these curves are provided and plotted.

Keywords

References

  1. A. T. Ali, Special Smarandache curves in the Euclidean space, International Journal of Mathematical Combinatorics, 2 (2010), 30-36.
  2. A. T. Ali, Position vectors of curves in the Galilean space $G_3$, Matematicki Vesnik, 64(3) (2012), 200-210.
  3. B. Divjak and Z. Milin Sipus, Minding's isometries of ruled surfaces in Galilean and pseudo-Galilean space, J. Geom., 77 (2003), 35-47. https://doi.org/10.1007/s00022-003-1646-6
  4. B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space $G_3$, Glasnik Matematicki, 22(42) (1987), 449-457.
  5. E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage Algebra Geom., 38(2) (1997), 261-288.
  6. E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66 (1909), 517-557. https://doi.org/10.1007/BF01450047
  7. I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, New York, 1979.
  8. M. Turgut and S. Yilmaz, Smarandache curves in Minkowski space-time, International Journal of Mathematical Combinatorics, 3 (2008), 51-55.
  9. M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.
  10. O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Institut fur Math. und Angew. Geometrie, Leoben, 1984.
  11. D.J. Struik, Lectures in Classical Differential Geometry, Addison,-Wesley, Reading, MA, 1961.
  12. X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design, 20 (2003), 303-317. https://doi.org/10.1016/S0167-8396(03)00074-8

Cited by

  1. Spacelike and timelike admissible Smarandache curves in pseudo-Galilean space vol.24, pp.3, 2016, https://doi.org/10.1016/j.joems.2015.09.001
  2. Computation of Smarandache curves according to Darboux frame in Minkowski 3-space vol.25, pp.4, 2017, https://doi.org/10.1016/j.joems.2017.05.004