DOI QR코드

DOI QR Code

Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

  • Thao, N.T. (Department of Animal Science and Veterinary medicine, An Giang University) ;
  • Wanapat, M. (Tropical Feed Resources Research and Development Center, (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Kang, S. (Agricultural Unit, Department of Education, National Institute of Education) ;
  • Cherdthong, A. (Tropical Feed Resources Research and Development Center, (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2014.11.17
  • Accepted : 2015.02.27
  • Published : 2015.07.01

Abstract

Four rumen fistulated swamp buffaloes were randomly assigned according to a $4{\times}4$ Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

Keywords

References

  1. Ando, S., T. Nishida, M. Ishida, K. Hosoda, and E. Bayaru. 2003. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa. Livest. Prod. Sci. 82:245-248. https://doi.org/10.1016/S0301-6226(03)00012-5
  2. AOAC. 1995. Official Methods of Analyses, 16th ed. Animal Feeds: Association of Official Analytical Chemists, Arlington, VA, USA.
  3. Benchaar, C. and H. Greahead. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166-167:338-355. https://doi.org/10.1016/j.anifeedsci.2011.04.024
  4. Bencharr, C., H. V. Petit, R. Berthiaume, T. D. Whyte, and P. Y. Chouinard. 2006. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci. 89:4352-4364. https://doi.org/10.3168/jds.S0022-0302(06)72482-1
  5. Boadi, D., C. Benchaar, J. Chiquette, and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 84:319-335. https://doi.org/10.4141/A03-109
  6. Brooker, M. I. H., and D. A. Kleinig. 2006. Field Guide to Eucalyptus. Vol.1. South-eastern Australia, Third edition. Bloomings, Melbourne, Australia.
  7. Calabro, S., F. Infascelli, R. Tudisco, N. Musco, M. Grossi, G. Monastra, and M. I. Cutrignelli. 2013. Estimation of in vitro methane production in buffalo and cow. Buff. Bull. 32(Special Issue 2):924-927.
  8. Cardozo, P. W., S. Calsamiglia, A. Ferret, and C. Kamel. 2006. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 84:2801-2808. https://doi.org/10.2527/jas.2005-593
  9. Castillejos, L, S. Calsamiglia, and A. Ferret. 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro system. J. Dairy Sci. 89:2649-2658. https://doi.org/10.3168/jds.S0022-0302(06)72341-4
  10. Castillejos, L., S. Calsamiglia, A. Ferret, and R. Losa. 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed. Sci. Technol. 132:186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  11. Chaves, A. V., K. Stanford, M. E. R. Dugan, L. L. Gibson, T. A. McAllister, F. Van Herk, and C. Benchaar. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
  12. Chen, X. B. and M. J. Gomes. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivative-An overview of the technique details. Occasional publication 1992. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
  13. Chen, X. B., D. J. Kyle, and E. R. Orskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromatogr. B Biomed. Sci. Appl. 617:241-247. https://doi.org/10.1016/0378-4347(93)80494-O
  14. Crocker, C. L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 33:361-365.
  15. Cutrignelli, M. I., G. Piccolo, S. D'Urso, S. Calabro, F. Bovera, R. Tudisco, and F. Infascelli. 2007. Urinary excretion of purine derivatives in dry buffalo and Fresian cows. Ital. J. Anim. Sci. 6:563-566. https://doi.org/10.4081/ijas.2007.s2.563
  16. Elaissi, A., Z. Rouis, N. B. A. Salem, S. Mabrouk, Y. B. Salem, K. B. H. Salah, M. Aouni, F. Farhat, R. Chemli, F. Harzallah-Skhiri, and M. L. Khouja. 2012. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med. 12:81. https://doi.org/10.1186/1472-6882-12-81
  17. Fraser, G. R., A. V. Chaves, Y. Wang, T. A. McAllister, K. A. Beauchemin, and C. Benchaar. 2007. Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. J. Dairy. Sci. 90:2315-2328. https://doi.org/10.3168/jds.2006-688
  18. Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of animal and range science. New Mexico State University, Las Cruces, NM, USA. pp. 107-122.
  19. Giannenas, I., J. Skoufos, C. Giannakopoulos, M. Wiemann, O. Gortzi, S. Lalas, and I. Kyriazakis. 2011. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 94:5569-5577. https://doi.org/10.3168/jds.2010-4096
  20. Guglielmelli, A., S. Calabro, M. Cutrignelli, O. Gonzalez, F. Infascelli, R. Tudisco, and V. Piccolo. 2010. In vitro fermentation and methane production of fava and soy beans. EAAP Scientific Series 127(1):457-460.
  21. Hungate, R. E. 1969. A Role Tube Method for Cultivation of strict Anaerobes. Method in Microbiology (Eds. J. R. Norris and D. W. Ribbons). Academic Press, New York, NY, USA. 313.
  22. Liang, J. B., M. Matsumoto, and B. A. Young. 1994. Purine derivative excretion and ruminal microbial yield in Malaysian cattle and swamp buffalo. Anim. Feed Sci. Technol. 47:189-199. https://doi.org/10.1016/0377-8401(94)90123-6
  23. Manh, N. S., M. Wanapat, S. Uriyapongson, P. Khejornsart, and V. Chanthakhoun. 2012. Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afr. J. Agric. Res. 7(13):1997-2003.
  24. Moss, A. R., J. P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
  25. Newbold, C. J., F. M. McInstosh, P. Williams, R. Losa, and R. J. Wallace. 2004. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114:105-112. https://doi.org/10.1016/j.anifeedsci.2003.12.006
  26. Patra, A. K. and J. Saxena. 2009. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek 96:363-375. https://doi.org/10.1007/s10482-009-9364-1
  27. Patra, A. K., D. N. Kamra, and N. Agarwal. 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 90:511-520.
  28. Salem, A. Z. M., M. Z. M. Salem, M. M El-Adawy, and P. H. Robinson. 2006. Nutritive evaluations of some browse tree foliages during the dry season: Secondary compounds, feed intake and in vivo digestibility in sheep and goats. Anim. Feed Sci. Technol. 127:251-267. https://doi.org/10.1016/j.anifeedsci.2005.09.005
  29. Sallam, S. M. A., I. C. S Bueno, M. E. A. Nasser, and A. L. Abdalla. 2010. Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Ital. J. Anim. Sci. 9: e58.
  30. Sallam, S. M. A., M. E. A. Nasser, R. C. Araujo, and A. L. Abdalla. 2009. Methane emission in vivo by sheep consuming diet with different levels of eucalyptus essential oil. In proc. FAO/IAEA Int. Symp. on sustainable improvement of animal production and health, Vienna, Autralia. pp. 210-211.
  31. Samuel, M., S. Sagathewan, J. Thomas, and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 67:805-807.
  32. Santos, M. B., P. H. Robinson, P. Williams, and R. Losa. 2010. Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed Sci. Technol. 157: 64-71. https://doi.org/10.1016/j.anifeedsci.2010.02.001
  33. SAS. 1998. SAS/STAT User's Guid 6. 12th ed. SAS Institue Inc., Cary, NC, USA.
  34. Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics: A biometrical approach. 2nd ed. McGraw-Hill Book Company, New York, NY, USA.
  35. Thao, N. T., M. Wanapat, A. Cherdthong, and S. Kang. 2014. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian Australas. J. Anim. Sci. 27:46-54. https://doi.org/10.5713/ajas.2013.13301
  36. Van Soest, P. J., J. B. Robertson, and B. A. Lewis 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Wallace, R. J., D. Colombatto, and P. H. Robinson. 2008. Enzymes, direct-fed microbials and plant extracts in ruminant nutrition. Anim. Feed Sci. Technol. 145:1-4. https://doi.org/10.1016/j.anifeedsci.2007.07.006
  38. Wanapat, M., S. Kang, and S. Polyorach. 2013a. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J. Anim. Sci. Biotechnol. 4:32. https://doi.org/10.1186/2049-1891-4-32
  39. Wanapat, M., S. Kang, and K. Phetsatcha. 2013b. Enhancing buffalo production efficiency through rumen manipulation and nutrition. Buffalo Bull. 32(Special Issue 1):258-275.
  40. Wanapat, M., S. Kang, P. Khejornsart, and S. Wanapat. 2013c. Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle. Asian Australas. J. Anim. Sci. 26:1127-1136. https://doi.org/10.5713/ajas.2013.13013
  41. Wanapat, M., S. Kang, N. Hankla, and K. Phesatcha. 2013d. Effect of rice straw treatment on feed intake, rumen fermentation and milk production in lactating dairy cows. Afr. J. Agric. Res. 8:1677-1687. https://doi.org/10.5897/AJAR2013.6732
  42. Wanapat, M., V. Chanthakhoun, K. Phesatcha, and S. Kang. 2014. Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in swamp buffaloes. Livest. Sci. 162:126-133. https://doi.org/10.1016/j.livsci.2014.01.025
  43. Wang, C. J., S. P. Wang, and H. Zhou. 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 148:157-166. https://doi.org/10.1016/j.anifeedsci.2008.03.008

Cited by

  1. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0126-4
  2. Plant extracts as phytogenic additives considering intake, digestibility, and feeding behavior of sheep vol.49, pp.2, 2017, https://doi.org/10.1007/s11250-016-1199-y
  3. Dietary supplementation with papaya (Carica papaya L.) leaf affects abundance of rumen methanogens, fermentation characteristics and blood plasma fatty acid composition in goats vol.16, pp.2, 2018, https://doi.org/10.5424/sjar/2018162-11812
  4. Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) - A Review of Ten-Year Studies vol.19, pp.1, 2015, https://doi.org/10.2478/aoas-2018-0037
  5. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review vol.132, pp.None, 2015, https://doi.org/10.1016/j.indcrop.2019.02.051
  6. Influence of Corymbia citriodora leaf extract on growth performance, ruminal fermentation, nutrient digestibility, plasma antioxidant activity and faecal bacteria in young calves vol.261, pp.None, 2015, https://doi.org/10.1016/j.anifeedsci.2020.114394
  7. The use of plant by-products as non-conventional feedstuff for livestock feeding with reference to rumen methanogenesis vol.94, pp.4, 2015, https://doi.org/10.1007/s10457-019-00426-z
  8. Influence of diets supplemented with naturally protected or unprotected eucalyptus oil on methane production and lactating buffalo productivity vol.54, pp.1, 2015, https://doi.org/10.1007/s11250-021-03008-3