Microscopic Investigation Towards Macroscopic behavior of Nanocarbon-Polymer Composites

나노카본-고분자 복합재의 거시적 거동에 관한 미시적 고찰

  • 조맹효 (서울대학교 기계항공공학부) ;
  • 양승화 (동아대학교 기계공학과)
  • Published : 2015.06.08

Abstract

Keywords

References

  1. Ajayan, P.M., Stephano, O., Colliex, C., Trauth, D. (1994) Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composites, Science, 265, pp. 1212-1214. https://doi.org/10.1126/science.265.5176.1212
  2. Wei, C.Y., Srivastava, D., Cho, K.(2004) Structural Ordering in Nanotube Polymer Composites, Nano Letters, 4, pp. 1949-1952. https://doi.org/10.1021/nl048845m
  3. Yang, S., Yu, S., Kyoung, W., Han, D.S., Cho, M. (2012) Multiscale Modeling of Size-dependent Elastic Properties of Carbon Nanotube/polymer nanocomposites with Interfacial Imperfections, Polymer, 53, pp. 623-633. https://doi.org/10.1016/j.polymer.2011.11.052
  4. Odegard, G.M., Clancy, T.C., Gates, T.S.(2005) Modeling of the Mechanical Properties of Nano particle/ Polymer Composites, Polymer, 46. pp. 553-562. https://doi.org/10.1016/j.polymer.2004.11.022
  5. Yang, S., Cho. (2008) Scale Bridging Method to Characterize Mechanical Properties of Nanoparticle/ Polymer nanocomposites, Applied Physics Letters, 93, 043111 https://doi.org/10.1063/1.2965486
  6. Yu, S., Yang, S., Cho. (2009) Multiscale Modeling of Cross-linked Epoxy Nanocomposites, Polymer, 50, 945-952 https://doi.org/10.1016/j.polymer.2008.11.054
  7. 양승화, 유수영, 조맹효. (2009) 나노입자의 크기효과와 체적분율 효과를 동시 고려한 나노복합재의 멀티스케일 브리징 해석기법에 관한 연구, 한국전산구조공학회 논문집, 22(4), pp. 343-348.
  8. Cho, M., S, Yang., S, Chang., Yu, S.(2011) A study on the prediction of mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept, International Journal for Numerical Methods in Engineering, 85, 1564-1583. https://doi.org/10.1002/nme.3039
  9. Shin, H., Yang, S., Chang, S., Yu, S., Cho, M.(2013) Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance, Polymer, 54, 1543-1554. https://doi.org/10.1016/j.polymer.2013.01.020
  10. Qui, Y.P., Weng, G.J. (1992) Theory of Plasticity for Porous Materials and Particle-reinforced Composites, Journal of Applied Mechanics, 59, pp. 261-268. https://doi.org/10.1115/1.2899515
  11. Mori, T., Tanaka, K. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metallurgica, 21, pp. 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  12. Qu, J. (1993) Eshelby Tensor for Elastic Inclusion with Slightly Weakened Interface, Journal of Applied Mechanics, 60, pp. 1048-1050. https://doi.org/10.1115/1.2900974
  13. Hill, R. (1965) Continuum Micro-mechanics of Elastoplastic Polycrystals, Journal of Mechanics and Physics of Solids, 13, pp. 89-101. https://doi.org/10.1016/0022-5096(65)90023-2
  14. Hu, G.K. (1996) A method of Plasticity for General Aligned Spheroidal Void or Fiber-reinforced Composites, International Journal of Plasticity, 12, 439-449. https://doi.org/10.1016/S0749-6419(96)00015-0