DOI QR코드

DOI QR Code

Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

  • Rice, Kevin M. (Center for Diagnostic Nanosystems, Marshall University) ;
  • Nalabotu, Siva K. (Center for Diagnostic Nanosystems, Marshall University) ;
  • Manne, Nandini D.P.K. (Center for Diagnostic Nanosystems, Marshall University) ;
  • Kolli, Madhukar B. (Center for Diagnostic Nanosystems, Marshall University) ;
  • Nandyala, Geeta (Center for Diagnostic Nanosystems, Marshall University) ;
  • Arvapalli, Ravikumar (Center for Diagnostic Nanosystems, Marshall University) ;
  • Ma, Jane Y. (Health Effects Laboratory Division, NIOSH) ;
  • Blough, Eric R. (Center for Diagnostic Nanosystems, Marshall University)
  • 투고 : 2015.01.30
  • 심사 : 2015.04.22
  • 발행 : 2015.05.31

초록

Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide ($CeO_2$) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or $CeO_2$ nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after $CeO_2$ instillation (p<0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to $CeO_2$ nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.

키워드

참고문헌

  1. Heckert EG, Seal S, Self WT. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 2008;42(13):5014-5019. https://doi.org/10.1021/es8001508
  2. Bumajdad A, Eastoe J, Mathew A. Cerium oxide nanoparticles prepared in self-assembled systems. Adv Colloid Interface Sci 2009;147-148:56-66. https://doi.org/10.1016/j.cis.2008.10.004
  3. Park B, Martin P, Harris C, Guest R, Whittingham A, Jenkinson P, et al. Initial in vitro screening approach to investigate the potential health and environmental hazards of Enviroxtrade mark - a nanoparticulate cerium oxide diesel fuel additive. Part Fibre Toxicol 2007;4:12. https://doi.org/10.1186/1743-8977-4-12
  4. Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, et al. Nanoceria as antioxidant: synthesis and biomedical applications. JOM (1989) 2008;60(3):33-37. https://doi.org/10.1007/s11837-008-0029-8
  5. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 2007;73(3): 549-559. https://doi.org/10.1016/j.cardiores.2006.11.031
  6. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007;28(10):1918-1925. https://doi.org/10.1016/j.biomaterials.2006.11.036
  7. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, et al. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009;5(2):225-231. https://doi.org/10.1016/j.nano.2008.10.003
  8. Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 2006;25(6):451-457. https://doi.org/10.1080/10915810600959543
  9. Eom HJ, Choi J. Oxidative stress of $CeO_{2}$ nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 2009;187(2):77-83. https://doi.org/10.1016/j.toxlet.2009.01.028
  10. He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, et al. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation.Nanotechnology 2010;21(28):285103. https://doi.org/10.1088/0957-4484/21/28/285103
  11. Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 2011;41(3):213-229. https://doi.org/10.3109/10408444.2010.529105
  12. Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 2011;5(3):312-325. https://doi.org/10.3109/17435390.2010.519835
  13. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 1996;271(8):4138-4142. https://doi.org/10.1074/jbc.271.8.4138
  14. Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B. Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase). Eur J Biochem 1997;244(2):587-595. https://doi.org/10.1111/j.1432-1033.1997.00587.x
  15. Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, et al. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 1998;275(3 Pt 1):L551-L558.
  16. Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, et al. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine 2011;6:2327-2335.
  17. Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 2011;5(3):312-325. https://doi.org/10.3109/17435390.2010.519835
  18. Wu M, Liu H, Fannin J, Katta A, Wang Y, Arvapalli RK, et al. Acetaminophen improves protein translational signaling in aged skeletal muscle. Rejuvenation Res 2010;13(5):571-579. https://doi.org/10.1089/rej.2009.1015
  19. Kakarla SK, Fannin JC, Keshavarzian S, Katta A, Paturi S, Nalabotu SK, et al. Chronic acetaminophen attenuates age-associated increases in cardiac ROS and apoptosis in the Fischer Brown Norway rat. Basic Res Cardiol 2010;105(4):535-544. https://doi.org/10.1007/s00395-010-0094-3
  20. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117(Pt 8):1281-1283. https://doi.org/10.1242/jcs.00963
  21. Park EJ, Choi J, Park YK, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008;245(1-2):90-100. https://doi.org/10.1016/j.tox.2007.12.022
  22. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006; 92(1):5-22. https://doi.org/10.1093/toxsci/kfj130
  23. Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009;260(1-3):37-46. https://doi.org/10.1016/j.tox.2009.03.005
  24. Ren H, Huang X. Polyacrylate nanoparticles: toxicity or new nanomedicine? Eur Respir J 2010;36(1):218-221. https://doi.org/10.1183/09031936.00022410
  25. Bergamaschi E, Bussolati O, Magrini A, Bottini M, Migliore L, Bellucci S, et al. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 2006;19(4 Suppl):3-10.
  26. Stone V, Johnston H, Clift MJ. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 2007;6(4):331-340. https://doi.org/10.1109/TNB.2007.909005
  27. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 2009;117(5):703-708. https://doi.org/10.1289/ehp.11922
  28. Jeong YS, Oh WK, Kim S, Jang J. Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres. Biomaterials 2011;32(29):7217-7225. https://doi.org/10.1016/j.biomaterials.2011.06.020
  29. Koike E, Kobayashi T. Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 2006;65(6): 946-951. https://doi.org/10.1016/j.chemosphere.2006.03.078
  30. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008;44(9):1689-1699. https://doi.org/10.1016/j.freeradbiomed.2008.01.028
  31. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2(4):MR17-MR71. https://doi.org/10.1116/1.2815690
  32. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S. Nanoparticles: molecular targets and cell signalling. Arch Toxicol 2011;85(7):733-741. https://doi.org/10.1007/s00204-010-0546-4
  33. Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 2001;52(3-5):159-164. https://doi.org/10.1080/15216540152845957
  34. Kuwano K. Epithelial cell apoptosis and lung remodeling. Cell Mol Immunol 2007;4(6):419-429.
  35. Kang KA, Wang ZH, Zhang R, Piao MJ, Kim KC, Kang SS, et al. Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int J Mol Sci 2010;11(11):4348-4360. https://doi.org/10.3390/ijms11114348
  36. Blank VC, Pena C, Roguin LP. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-alpha2b peptide. Exp Cell Res 2010;316(4):603-614. https://doi.org/10.1016/j.yexcr.2009.11.016

피인용 문헌

  1. Zinc Oxide Nanoparticle–Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma vol.14, pp.3, 2015, https://doi.org/10.1021/acs.molpharmaceut.6b00795
  2. Fine Particulate Matter and Sulfur Dioxide Coexposures Induce Rat Lung Pathological Injury and Inflammatory Responses Via TLR4/p38/NF-κB Pathway vol.36, pp.2, 2017, https://doi.org/10.1177/1091581816682225
  3. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats vol.14, pp.None, 2017, https://doi.org/10.1186/s12989-017-0204-6
  4. Nanoparticles induce apoptosis via mediating diverse cellular pathways vol.13, pp.22, 2018, https://doi.org/10.2217/nnm-2018-0167
  5. Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 mice vol.8, pp.None, 2015, https://doi.org/10.1038/s41598-018-22556-7
  6. Pulmonary toxicity of inhaled nano-sized cerium oxide aerosols in Sprague-Dawley rats vol.13, pp.6, 2015, https://doi.org/10.1080/17435390.2018.1554751
  7. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior vol.15, pp.17, 2015, https://doi.org/10.2217/nnm-2020-0104
  8. Nanoceria distribution and effects are mouse-strain dependent vol.14, pp.6, 2015, https://doi.org/10.1080/17435390.2020.1770887
  9. Hepatotoxic Effect of Oral Zinc Oxide Nanoparticles and the Ameliorating Role of Selenium in Rats: A histological, immunohistochemical and molecular study vol.67, pp.None, 2015, https://doi.org/10.1016/j.tice.2020.101441
  10. Effects of contaminated surface water and groundwater from a rare earth mining area on the biology and the physiology of Sprague-Dawley rats vol.761, pp.None, 2015, https://doi.org/10.1016/j.scitotenv.2020.144123
  11. Effects of radiation and role of plants in radioprotection: A critical review vol.779, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146431
  12. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T1 relaxivity and selective cytotoxicity to cancer cells vol.9, pp.33, 2015, https://doi.org/10.1039/d1tb01147b
  13. Influence of Ce3+ Substitution on Antimicrobial and Antibiofilm Properties of ZnCexFe2−xO4 Nanoparticles (X = 0.0, 0.02, 0.04, 0.06, and 0.08) Conjugated with Ebselen and Its Role Subsidised wi vol.22, pp.18, 2015, https://doi.org/10.3390/ijms221810171