DOI QR코드

DOI QR Code

Biodegradable Chitosan/PLGA/Polysorbate80 Nanofibrous Mat Fabrication and Application to Tissue-adhesion Barriers

Chitosan/PLGA/Polysorbate80 생분해성 나노섬유의 제조 및 조직유착방지제로의 응용

  • Kim, Daeyeon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Bang, Sumi (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Cheol Joo (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Won Il (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kwon, Oh Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 김대연 (금오공과대학교 고분자공학과) ;
  • 방수미 (금오공과대학교 고분자공학과) ;
  • 김철주 (금오공과대학교 고분자공학과) ;
  • 김원일 (금오공과대학교 고분자공학과) ;
  • 권오형 (금오공과대학교 고분자공학과)
  • Received : 2015.03.07
  • Accepted : 2015.04.13
  • Published : 2015.04.30

Abstract

In the field of surgery, several instances of adhesions in the abdomen, bowel, uterus, and pelvis are observed. Severe post-operative adhesions cause pain in the pelvis and bowel, infertility, and intestinal obstruction. Despite much interest in preventing postoperative adhesion, these symptoms appear persistently. In this study, various composition of chitosan and PLGA blend nanofibrous sheets containing a small quantity of nonionic surfactant, polysorbate80 were fabricated by electrospining technique for application to anti-adhesion barrier. The average diameter of fabricated nanofibers as determined by SEM ranged between 100 to 130 nm. Surface hydrophilicity and biodegradability of nanofibrous mats increased with increasing chitosan content. However, cell attachment and proliferation on nanofibrous surfaces were decreased with increasing chitosan content, probably due to enhanced hydrophilicity. In vivo animal test confirmed that the Chitosan/PLGA(5:5)/Polysorbate80 nanofibrous sheet was sufficiently effective, than the PLGA nanofibrous sheet, in preventing undesired tissue adhesion.

Keywords

References

  1. H. Ellis, "The Cause and Prevention of Postoperative Intraperitoneal Adhesion", Surg. Gynecol. Obstet., 1971, 133, 497-511.
  2. N. F. Ray, W. G. Denton, M. Thamer, S. C. Henderson, and S. Perry, "Abdominal Adhesiolysis : Inpatient Care and Expenditures in the United States in 1994", J. Am. Coll. Surg., 1998, 186, 1-9. https://doi.org/10.1016/S1072-7515(97)00127-0
  3. Cary B. Linsky, "Method and Material for Prevention of Surgical Adhesions", US Patent, 5,002,551(1991).
  4. A.-G. Oh, "Trends of Anti-adhesion Adjuvant-Review", Biomater. Res., 2013, 17, 138-145.
  5. H. J. Song, J. W. Kim, J. S. Park, Y. S. Kim, Y. S. Choi, B. G. Kim, S. J. Cha, S. J. Park, I. T. Chang, S. I. Park, E. S. Park, and S. A. Hong, "Effects of Three Different Types of Anti-adhesive Agents in a Rat Abdominal Wall Defect Model", J. Korean Surg. Soc., 2009, 77, 7-14. https://doi.org/10.4174/jkss.2009.77.1.7
  6. M. P. Diamond, E. L. Burns, B. Accomando, S. Mian, and L. Holmdahl, "$Seprafilm^{(R)}$ Adhesion Barrier : (1) a Review of Preclinical, Animal, and Human Investigational Studies", Gynecol. Surg., 2012, 9, 237-245. https://doi.org/10.1007/s10397-012-0741-9
  7. M. P. Diamond, E. L. Burns, B. Accomando, S. Mian, and L. Holmdahl, "$Seprafilm^{(R)}$ Adhesion Barrier : (2) a Review of the Clinical Literature on Intraabdominal Use", Gynecol. Surg., 2012, 9, 247-257. https://doi.org/10.1007/s10397-012-0742-8
  8. L. Gargo, G. Saed, E. Elhammady, and M. P. Diamond, "Effect of Oxidized Regenerated Cellulose (Interceed) on the Expression of Tissue Plasminogen Activator and Plasminogen Activator Inhibitor-1 in Human Peritoneal Fibroblasts and Mesothelial Cells", Fertil. Steril., 2006, 86, 1223-1227. https://doi.org/10.1016/j.fertnstert.2006.04.021
  9. L. Mettler, A. Audebert, E. Lehmann-Willenbrock, K. Schive, and V. R. Jacobs, "Prospective Clinical Trial of SprayGel as a Barrier to Adhesion Formation : An Interim Analysis", J. Am. Assoc. Gynecol. Laparosc., 2003, 10, 339-344. https://doi.org/10.1016/S1074-3804(05)60258-7
  10. S. A. Lee, J. S. Kim, J. S. Kim, J. J. Hwang, W. S. Lee, Y. H. Kim, Y. K. Choi, and H. K. Chee, "A Study of the Effect of a Mixture of Hyaluronic Acid and Sodium Carboxymethyl Cellulose ($Guardix-sol^{(R)}$) on the Prevention of Pericardial Adhesion", Korean J. Thorac. Cardiovasc. Surg., 2010, 43, 596-601. https://doi.org/10.5090/kjtcs.2010.43.6.596
  11. K. Vishakha, B. Kishor, and R. Sudha, "Natural Polymers - A Comprehensive Review", International Journal of Reasearch in Pharmaceutical and Biomedical Sciences, 2012, 3, 1597-1613.
  12. H. Zhang, R. Li, and W. Liu, "Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits : A Revies", Int. J. Mol. Sci., 2011, 12, 917-934. https://doi.org/10.3390/ijms12020917
  13. P. Dutta and J. Dutta, "Chitin and Chitosan : Chemistry, Properties and Applications", J. Sci. Ind. Res., 2004, 63, 20-31.
  14. J. K. Suh and H. Matthew, "Application of Chitosan-based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review", Biomaterials, 2000, 21, 2589-2598. https://doi.org/10.1016/S0142-9612(00)00126-5
  15. K. Hirenkumar, Makadia, and J. S. Steven, "Poly Lactic-co- Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier", Polymers, 2011, 3, 1377-1397. https://doi.org/10.3390/polym3031377
  16. S. Kim and S. H. Kim, "Biofunctional Biodegradable Polymers", Polym. Sci. Technol., 2007, 18, 450-457.
  17. Y. Wang, B. Wang, W. Qiao, and T. Yin, "A Novel Controlled Release Drug Delivery System for Multiple Drugs Based on Electrospun Nanofibers Containing Nanoparticles", J. Pharm. Sci., 2010, 99, 4805-4811. https://doi.org/10.1002/jps.22189
  18. http://en.wikipedia.org/wiki/Sessile_drop_technique.
  19. P. R. Twentyman and M. Luscombe, "A Study of Some Variables in a Tetrazolium Dye (MTT) Based Assay for Cell Growth and Chemosensitivity", Brit. J. Cancer., 1987, 56, 279-285. https://doi.org/10.1038/bjc.1987.190
  20. A. Vlahos, P. Yu, C. E. Lucas, and A. M. Ledgerwood, "Effect of a Composite Membrane of Chitosan and Poloxamer Gel on Postoperative Adhesive Interations", Am. Surg., 2001, 67, 15-21.
  21. F. Ajalloueian, H. Tavanai, J. Hilborn, O. Donzel-Gargand, K. Leifer, A. Wickham, and A. Arpanaei, "Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications", Biomed. Res. Int., 2014, 2014, 1-13.
  22. B. Basu, D. Katti, and A. Kumar (Ed.), "Advanced Biomaterials : Fundamentals, Processing, and Applications", John Wiley & Sons Inc., New Jersey, 2009, p.463.
  23. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, and K. Yao, "A Nanofibrous Composite Membrane of PLGAChitosan/ PVP Prepared by Electrospinning", Eur. Polym. J., 2006, 42, 2013-2022. https://doi.org/10.1016/j.eurpolymj.2006.04.021
  24. A. D. Li, Z. Z. Sun, M. Zhou, X. X. Xu, J. Y. Ma, W. Zheng, H. M. Zhou, L. Li, and Y. F. Zheng, "Electrospun Chitosan-graft- PLGA Nanofibres with Significantly Enhanced Hydrophilicity and Improved Mechanical Property," Colloid Surf. B-Biointerfaces, 2013, 102, 674-681. https://doi.org/10.1016/j.colsurfb.2012.09.035
  25. J. Carvalho, S. Moreira, J. Maia, and F. M. Gama, "Characterization of Dextrin-based Hydrogels: Rheology, Biocompatibility, and Degradation," J. Biomed. Mater. Res. A, 2010, 93, 389-399.
  26. Y. Tamada and Y. Ikada, "Fibroblast Growth on Polymer Surfaces and Biosynthesis of Collagen", J. Biomed. Mater. Res., 1994, 28, 783-789. https://doi.org/10.1002/jbm.820280705