DOI QR코드

DOI QR Code

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery

연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발

  • Oh, Seung-Taek (Electrical Electronics & Communication Engineering, Korea University of Technology and Education) ;
  • Kim, Byung-Ki (Electrical Electronics & Communication Engineering, Korea University of Technology and Education) ;
  • Park, Jae-Beom (Electrical Electronics & Communication Engineering, Korea University of Technology and Education) ;
  • Rho, Dae-Seok (Electrical Electronics & Communication Engineering, Korea University of Technology and Education)
  • 오승택 (한국기술교육대 전기전자통신공학부) ;
  • 김병기 (한국기술교육대 전기전자통신공학부) ;
  • 박재범 (한국기술교육대 전기전자통신공학부) ;
  • 노대석 (한국기술교육대 전기전자통신공학부)
  • Received : 2014.11.10
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

현재 대부분의 도서지역에서는 태양광발전을 효율적으로 운용하기 위하여 대용량 연축전지가 많이 사용되고 있지만, 풍력발전의 도입, 축전지 교체로 인하여 리튬이온전지의 도입이 증가하고 있다. 따라서 본 논문에서는 기존에 많이 보급되어 사용되고 있는 연축전지와 리튬이온전지의 장점을 최대한 활용하기 위하여, 연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘을 제시하였다. 즉, 각 전지의 충전상태(state of charge, SOC)를 평가하는 알고리즘과 각 전지의 도입비용과 운용비용에 따른 최적 구성비를 산출하는 하이브리드 운용 알고리즘을 제안하였다. 상기의 알고리즘을 이용하여 다양한 시뮬레이션을 수행한 결과, 기존의 충전상태 평가 방법보다 오차율이 개선되어 정확한 충전상태에 대한 결과가 산출되었고, 각 전지의 도입비용과 운용비용이 최소화되는 조건에서 최적구성비를 구하여, 본 논문에서 제안한 하이브리드 BMS 알고리즘의 유용성을 확인하였다.

Keywords

References

  1. Jaebum Park and Daeseok Rho, "A Study on the Technical Guideline for Secondary Battery in Nuclear Power Plant", Journal of KAIS, Vol 15, No 1, pp. 45-47, May, 2014.
  2. Seungtaek Oh and Daeseok Rho, "A Study on Analysis of Power Supply System in Nuclear Power Plant", Journal of KAIS, Vol 15, No 1, pp. 48-50, May, 2014.
  3. M. Broussely and G. Pistoia, "Industrial applications of batteries", Amsterdam, 2007.
  4. Jongyoon Jeong and Daeseok Rho, "A Study on the Optimal Design of Hybrid-typed Electrical Energy Storage System(EESS)", Journal of KAIS, Vol 15, No 1, pp. 587-589, May, 2014.
  5. Daeseok Rho, "A Study on Load leveling effect of the distribution system using the Battery Energy Storage Systems", Journal of KIEE, pp. 111-113, October, 2012.
  6. "SMART GRID ESS(Electric Energy Storage System)", KSGA, September, 2012.
  7. Jukwang Lee and Daeseok Rho, "A Study on the Current Status of Standardization in Electrical Energy Storage System", Journal of KAIS, Vol 14, No 2, pp. 557-559, May, 2013.
  8. Jaebum Park and Daeseok Rho, "A Study on the BMS Design of Lithium-ion Battery for Energy Storage System", Journal of KAIS, Vol 14, No 2, pp. 157-159, May, 2013.
  9. IEEE $308^{TM}$ -1991, IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations
  10. IEEE $323^{TM}$-1983, IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations
  11. IEEE $494^{TM}$-1974, IEEE Standard Method for Identification of Documents Related to Class 1E Equipment and Systems for Nuclear Power Generating Stations
  12. IEEE $535^{TM}$-1986, IEEE Standard for Qualification of Class 1E Lead Storage Batteries for Nuclear Power Generating Stations
  13. Giuk Jang and Gyobeom Jung, "Comparison of Battery Modeling and SOC Estimation Methods", Journal of KIPE, pp. 87-88, July, 2010.