DOI QR코드

DOI QR Code

Numerical Analysis on the Effect of Corrugation Angle on the Performance of Humidifying Element

절곡각에 따른 가습소자의 성능에 대한 수치해석적 연구

  • Lee, Eul-Jong (Division of Mechanical System Engineering Incheon National University) ;
  • Kim, Nae-Hyun (Division of Mechanical System Engineering Incheon National University)
  • 이을종 (인천대학교 기계시스템공학부) ;
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2015.01.14
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

In this study, the effect of corrugation angle on thermal performance of corrugated plate is numerically investigated with an aim to develop humidifying element. Numerical analysis was conducted for a range of corrugation angle (from $0^{\circ}/0^{\circ}$ to $60^{\circ}/60^{\circ}$ for equal angle and from $15^{\circ}/0^{\circ}$ to $15^{\circ}/60^{\circ}$ for unequal angle). Results revealed that both j and f factor increased as corrugation angle increased. Especially, f factor increased significantly at high corrugation angles. j and f factors of unequal angle plates and those of equal angle (obtained by averaging unequal angles) plates were approximately the same. The largest $j/f^{1/3}$, which implies the largest heat transfer rate per consumed power, was obtained at $15^{\circ}/15^{\circ}$. Existing correlations under- or over-predicted the present numerical results.

본 연구에서는 가습소자 개발을 목적으로 절곡형상이 전열판의 성능에 미치는 영향을 수치해석적으로 검토하였다. 수치해석은 절곡각을 변화시키며 ($0^{\circ}/0^{\circ}$에서 $60^{\circ}/60^{\circ}$사이의 등각도와 $15^{\circ}/0^{\circ}$에서 $15^{\circ}/60^{\circ}$사이의 엇각도) 수행되었다. 해석 결과 j와 f 인자 모두 절곡각이 증가할수록 증가하였다. 특히 f 인자는 절곡각이 큰 영역에서 급격히 증가하였다. 엇각도 전열판의 j, f 인자와 두 각을 평균내어 구한 등각도 전열판의 j, f 인자는 거의 같은 값을 나타내었다. 한편 동일 소비동력 대비 열전달량을 나타내는 $j/f^{1/3}$의 경우 $15^{\circ}/15^{\circ}$에서 가장 크게 나타났다. 기존 상관식은 본 수치해석 결과를 과대 또는 과소예측하였다.

Keywords

References

  1. ASHRAE Handbook, Fundmentals, ASHRAE, 2000.
  2. M. Barzegar, M. Layeghi, G. Ebrahimi, Y. Hamseh and M. Khorasani, "Experimental evaluation of the perfomance of cellulosic pads made of Kraft and NSCC corrugated papers as evaporative media," Energy Conversion and Management, Vol. 54, pp. 24-29, 2012. DOI: http://dx.doi.org/10.1016/j.enconman.2011.09.016
  3. J. K. Jain and D. A. Hindoliya, "Experimental performance of new evaporative cooling pad materials," Sustainable Cities and Society, Vol. 1. pp. 252-256, 2011. DOI: http://dx.doi.org/10.1016/j.scs.2011.07.005
  4. C. M. Liao, S. Singh and T. S. Wang, "Characterizing the performance of alternative evaporative cooling media in thermal environmental control application," J. Envir, Sci. Health, Vol. 33, No. 7, pp.1391-1417, 1998. DOI: http://dx.doi.org/10.1080/10934529809376795
  5. C. M. Liao and K. H. Chiu, "Wind tunnel modeling the system performance of alternative cooling pads in Taiwan region," Build. Environ. Vol. 37, No.2 pp. 77-87, 2002. DOI: http://dx.doi.org/10.1016/S0360-1323(00)00098-6
  6. A. Malli, H. R. Seyf, M. Layeghi, S. Sharifian and H. Behravesh, "Investigating the performance of cellulosic cooling pads," Energy Conversion and Management, Vol. 52, pp. 2598-2603, 2011. DOI: http://dx.doi.org/10.1016/j.enconman.2010.12.015
  7. A. Franco, D. L. Valera, A. Pena and A. M. Perez, "Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses," Computers and Electronics in Agriculture, Vol. 76, pp. 218-230, 2011. DOI: http://dx.doi.org/10.1016/j.compag.2011.01.019
  8. W. W. Focke, J. Zachariades and I. Olivier, "The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers," Int. J. Heat Mass Trans., Vol. 28, No. 8, pp. 1469-1479, 1985. DOI: http://dx.doi.org/10.1016/0017-9310(85)90249-2
  9. B. Thonon, R. Vidil and C. Marvillet, "Recent research and developments in plate heat exchangers," J. Enhanced Heat Transfer, Vol. 2, No. 1-2, pp. 149-155, 1995. DOI: http://dx.doi.org/10.1615/JEnhHeatTransf.v2.i1-2.160
  10. J. Stasiek, M. W. Collins, M. Ciofalo and P. E. Chew, "Investigation of flow and heat transfer in corrugated passages - I. Experimental results," Int. J. Heat Mass Trans., Vol. 39, No. 1, pp. 149-164, 1996. DOI: http://dx.doi.org/10.1016/S0017-9310(96)85013-7
  11. A. Muley and R. M. Manglik, "Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates," J. Heat Transfer, Vol. 121, pp. 110-117, 1999. DOI: http://dx.doi.org/10.1115/1.2826051
  12. A. Muley, R. M. Manglik and H. M. Metwally, "Enhanced heat transfer characteristics of viscous liquid flow in a chevron plate heat exchanger," J. Heat Transfer, Vol. 121, 1011-1017, 1999. DOI: http://dx.doi.org/10.1115/1.2826051
  13. M. Ciofalo, J. Stasiek and M. W. Collins, "Investigation of flow and heat transfer in corrugated passages-II. Numerical simulations," Vol. 39, No. 1, pp. 165-192, 1996.
  14. T.-Y. Kim, N.-J. Kim, J.-Y. Lee and C.-B. Kim, "Numerical analysis of heat transfer characteristics in corrugated plate type heat exchanger channel," Journal of the Society of Air-Conditioning and Refrigeration Engineers, Vol. 13, No. 7, pp. 588-594, 2001
  15. D. Dovic and S. Svaic, "Experimental and numerical study of the flow and heat transfer in plate heat exchanger channels, International Refrigeration and Air Conditioning Conference, R097, 2004.
  16. J. Oh, S. An, S. Nam and H. Cho, "Theoretical study on the heat transfer performance in the various type plate heat exchanger," Journal of the Society of Air-Conditioning and Refrigeration Engineers, Vol. 24, No. 8, pp. 636-645, 2012. DOI: http://dx.doi.org/10.6110/KJACR.2012.24.8.636
  17. H. Martin, "A theoretical approach to predict the performance of chevron-type plate heat exchangers," Chem. Eng. Proc., Vol. 35, pp. 301-310, 1996. DOI: http://dx.doi.org/10.1016/0255-2701(95)04129-X
  18. D. Dovic, B. Palm and S. Savic, "Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry," Int. J. Heat Mass Trans., Vol. 52, pp. 4553-4563, 2009. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.03.074
  19. J. P. Holman, Heast Transfer, 10th ed., 2010.
  20. Fluent 12, ANSYS, http://www.ansys.com.
  21. ASHRAE Standard 133, Method of Testing Direct Evaporative Air Coolers, ASHRAE, 2008.
  22. R. K. Shah and A. L. London, Laminar Flow Forced Convection in a Duct, Academic Pub., New York, 1978.
  23. R. L. Webb and N. H. Kim, Principles of Enhanced Heat Transfer, 2nd edition, Taylor and Francis Pub., 2005.