DOI QR코드

DOI QR Code

IoT 환경에서 수직 핸드오버를 활용한 효율적인 패킷 전송

Efficient Packet Transmission Utilizing Vertical Handover in IoT Environment

  • 주현우 (부산대학교 컴퓨터공학과) ;
  • 유영환 (부산대학교 컴퓨터공학과)
  • 투고 : 2015.01.13
  • 심사 : 2015.04.15
  • 발행 : 2015.06.15

초록

최근 주목 받고 있는 사물인터넷(Internet of Things)환경에서는 와이파이와 블루투스 같은 다양한 무선 표준들이 공존한다. 이러한 사물인터넷(IoT) 환경에서는 이종 무선 통신망 간의 핸드오버를 통하여 보다 안정적이고 효율적인 패킷 전송이 가능하다. 이에 본 논문에서는 사물인터넷 환경에서 다양한 무선표준과 통신프로토콜을 지원하는 IoT 브로커를 이용하여 와이파이와 블루투스 사이의 이종망 간 수직 핸드오버(Vertical handover) 시스템을 구현하였다. 핸드오버 시점 결정을 위하여 블루투스 프로토콜 스택(BlueZ)에서 제공하는 함수를 이용한 LQ(Link Quality)및 RSSI(Received Signal Strength Indication)측정 실험과 리눅스에서 제공하는 네트워크 정보를 활용한 사용자의 실시간 트래픽 측정 실험을 통해 최적의 Threshold값을 선정하였다. 실제 하드웨어를 사용한 실험을 통해 제안 방법이 에너지 효율을 향상시키고 QoS(Quality of Service)를 보장할 수 있음을 확인하였다.

The Internet of Things (IoT) has recently been showered with much attention worldwide. Various kinds of devices, communicating with each other in the IoT, demand multiple communication technologies to coexist. In this environment, mobile devices may utilize the vertical handover between different wireless radio interfaces such as Wi-Fi and Bluetooth, for efficient data transfer. In this paper, an IoT broker is implemented to support the vertical handover, which can also support and manage heterogeneous devices and communication interfaces. The handover is activated based on RSSI, Link Quality values, and real time traffic. The experimental results show that the proposed handover system substantially improves QoS in Bluetooth and reduces power consumption in mobile devices as compared with a system using only Wi-Fi.

키워드

과제정보

연구 과제번호 : 개방형 고성능 표준 IoT 디바이스 및 지능형 SW 개발

연구 과제 주관 기관 : 정보통신기술진흥센터

참고문헌

  1. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, Architectural Elements, and Future Directions," Future Gen. Comput. Syst., Vol. 29, No. 7, pp. 1645-1660, Sept. 32-34, 2013. https://doi.org/10.1016/j.future.2013.01.010
  2. X. Jia, O. Feng, T. Fan, and Q. Lei, "RFID Technology and Appli cations in Internet of Things (IoT)," Proc. of 2nd IEEE Int. Conf. Consu m. Electron., Commun. Netw. (CECNet), Yichang, China, pp. 1282-1285, Apr. 21-23, 2012.
  3. Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, "IoT Gateway: Bridging Wireless Sensor Networks into Internet of Things," Proc. of IEEE/IFIP 8th Int. Conf. Embedded Ubiquitous Comput. (EUC), Hong Kong, China, pp. 347-352, Dec. 11-13, 2010.
  4. P. Johansson, M. Kazantzidis, R. Kapoor, and M. Gerla, "Bluetooth: An Enabler for Personal Area Networking," IEEE Network, Vol. 15, No. 5, pp. 28-37, Sept.-Oct. 2001. https://doi.org/10.1109/65.953231
  5. M. Feeney and M. Nilsson, "Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment," Proc. of IEEE INFOCOM, pp. 1548-1557, 2001.
  6. GainSpan Corporation. Available: http://www.gainspan.com (downloaded 2015, Jun. 4)
  7. P. Bae, E. Moon, and Y. Jo, "The Heterogeneous Interface Decision Engine and Architecture for Energy Efficient Home network," KICS 2014, Vol. 38C, No. 01, pp. 22-24, Jan. 2014.
  8. GainSpan Corporation. Available: http://www.gainspan.com/news/news_20111114_LimitedAP (downloaded 2015, Jun. 4)
  9. R. Corvaja, "QoS Analysis in Overlay Bluetooth-WiFi Networks with Profile-Based Vertical Handover," IEEE Trans. Mobile Comput., Vol. 5, No. 12, pp. 1679-1690, Dec. 2006. https://doi.org/10.1109/TMC.2006.187
  10. T. Pering, Y. Agarwal, "CoolSpots: Reducing the Power Consumtion of Wireless Mobile Devices with Multiple Radio Interfaces," Proc. ACM MobiSys, pp. 220-232, Dec. 2006.
  11. BlueZ Project. Available: http://www.bluez.org/qualification/(downloaded 2015, Jun. 4)
  12. P. Warren and C. Lightfoot. Available: http://www.exparrot.com/pdw/iftop/ (downloaded 2015, Jun. 4)