DOI QR코드

DOI QR Code

A Re-configuration Scheme for Social Network Based Large-scale SMS Spam

소셜 네트워크 기반 대량의 SMS 스팸 데이터 재구성 기법

  • Received : 2015.01.07
  • Accepted : 2015.03.17
  • Published : 2015.06.15

Abstract

The Short Message Service (SMS) is one of the most popular communication tools in the world. As the cost of SMS decreases, SMS spam has been growing largely. Even though there are many existing studies on SMS spam detection, researchers commonly have limitation collecting users' private SMS contents. They need to gather the information related to social network as well as personal SMS due to the intelligent spammers being aware of the social networks. Therefore, this paper proposes the Social network Building Scheme for SMS spam detection (SBSS) algorithm that builds synthetic social network dataset realistically, without the collection of private information. Also, we analyze and categorize the attack types of SMS spam to build more complete and realistic social network dataset including SMS spam.

SMS는 현대 통신 수단 중 가장 많이 사용되고 있는 방법 중 하나로서, 그 사용 비용이 저렴해짐에 따라 SMS에서의 스팸도 함께 증가하였다. SMS 스팸을 탐지하는 연구들은 부득이하게 사용자의 발신번호, 수신번호 및 SMS내용 등의 즉 개인정보를 필요로 하게 된다는 점에서 데이터 수집 측면에서 큰 한계를 가지고 있다. 더욱이, 소셜 네트워크가 활성화됨에 따라 SMS 스팸들은 더욱 지능화되고 있으며 결과, SMS 스팸 탐지 기법 연구 수행시 해당 SMS관련 개인정보는 물론 사용자의 소셜 네트워크 관련 정보까지 필요로 한다. 따라서, 본 논문에서는 SMS 스팸을 탐지하기 위해 필요한 소셜 네트워크 데이터 셋을 사생활 침해 문제 없이 실제와 유사하게 재구성해주는 SBSS(Social network Building Scheme for SMS spam detection) 기법을 제안한다. 또한, 현재 존재하는 SMS 스팸의 공격 유형을 처음으로 구체화하고 분류하여 이를 반영했다.

Keywords

Acknowledgement

Supported by : 산업통산자원부, 민군기술협력진흥센터, 한국연구재단

References

  1. T. M. Mahmoud and A. M. Mahfouz, "SMS Spam Filtering Technique Based on Artificial Immune System," International Journal of Computer Science Issues (IJCSI), Vol. 9, 2012.
  2. T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, "Contributions to the study of SMS spam filtering: new collection and results," Proc. of the 11th ACM symposium on Document engineering, pp. 259-262, 2011.
  3. T. Chen and M.-Y. Kan, "Creating a live, public short message service corpus: The NUS SMS corpus," Language Resources and Evaluation, Vol. 47, pp. 299-335, 2013.
  4. S. J. Delany, M. Buckley, and D. Greene, "SMS spam filtering: methods and data," Expert Systems with Applications, Vol. 39, pp. 9899-9908, 2012. https://doi.org/10.1016/j.eswa.2012.02.053
  5. J. W. Yoon, H. Kim, and J. H. Huh, "Hybrid spam filtering for mobile communication," computers & security, Vol. 29, pp. 446-459, 2010. https://doi.org/10.1016/j.cose.2009.11.003
  6. A. H. Wang, "Don't follow me: Spam detection in twitter," Security and Cryptography (SECRYPT), Proc. of the 2010 International Conference on, pp. 1-10, 2010.
  7. F. J. Ortega, C. Macdonald, J. A. Troyano, and F. Cruz, "Spam detection with a content-based random-walk algorithm," Proc. of the 2nd international workshop on Search and mining user-generated contents, pp. 45-52, 2010.
  8. Q. Gan and T. Suel, "Improving web spam classifiers using link structure," Proc. of the 3rd international workshop on Adversarial information retrieval on the web, pp. 17-20, 2007.
  9. S. Y. Bhat and M. Abulaish, "Community-based features for identifying spammers in online social networks," Proc. of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 100-107, 2013.
  10. P. Oscar and V. Roychowdbury, "Leveraging social networks to fight spam," IEEE Computer, Vol. 38, pp. 61-68, 2005.
  11. M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, "Measuring User Influence in Twitter: The Million Follower Fallacy," ICWSM, Vol. 10, pp. 10-17, 2010.
  12. S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto, et al., "Understanding and combating link farming in the twitter social network," Proc. of the 21st international conference on World Wide Web, pp. 61-70, 2012.
  13. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," Journal of Statistical Mechanics: Theory and Experiment, Vol. 2008, p. P10008, 2008. https://doi.org/10.1088/1742-5468/2008/10/P10008
  14. H. Kwak, C. Lee, H. Park, and S. Moon, "What is Twitter, a social network or a news media?," Proc. of the 19th international conference on World wide web, pp. 591-600, 2010.