DOI QR코드

DOI QR Code

Implementation of the Equalization Circuits for High Bandwidth Visible Light Communications Using Phosphorescent White LED

인광성 백색 LED의 가시광 통신 변조 대역폭 향상을 위한 등화기 구현

  • Sohn, Kyung-Rak (Major of Electronics and Communications Engineering, Korea Maritime and Ocean University)
  • Received : 2015.01.30
  • Accepted : 2015.04.30
  • Published : 2015.05.31

Abstract

In this paper, a commercial phosphorescent white light-emitting diode (WLED) visible light communication (VLC) system with an equalization circuit to achieve the high modulation bandwidth was designed and demonstrated. An analytical method to examine the performance of the equalizer was carried out using a general circuit-simulator, PSpice. The equalization circuit was composed of two passive filters with resisters and a capacitor and an active filter with an op-amp. Utilizing our post-equalization technology, the ~3.5 MHz bandwidth of phosphor WLED could be extended to ~25 MHz without using an optical blue-filter. In this VLC system with a single round-type WLED and a single PIN photo-diode, ASK data transmission up to 35 Mbps at a 1m free space distance was obtained. The resulting bit-error-rate was $7.6{\times}10^{-4}$, which is less than the forward error correction (FEC) limit of $3.8{\times}10^{-3}$.

본 논문에서는 인광물질을 포함하는 조명용 백색 LED를 이용한 가시광 통신 시스템의 변조 대역폭을 늘리기 위한 등화기를 설계하고 실험적으로 결과를 보였다. 등화기의 성능을 분석하기 위한 해석적 방법으로 회로 시뮬레이터인 PSpice를 이용하였다. 등화기는 저항과 커패시터를 이용한 수동필터와 증폭기를 이용한 능동필터의 조합으로 구성하였다. 등화기를 수신단에 적용함으로써 3.5 MHz 부근의 인광성 백색 LED 변조 대역폭이 청색 광학필터를 사용하지 않고도 25 MHz 까지 확장되었다. 상용화된 라운드형 백색 LED 1개와 PIN형 광 다이오드 1개를 이용하여 구현한 가시광 통신 시스템에서 진폭편이변조 방식으로 변조된 LED의 가시광 신호는 1미터 거리에서 35 Mbit/s 데이터 전송률을 보였다. 이때의 비트 에러율은 $7.6{\times}10^{-4}$이었으며 이는 순방향 오류 정정의 한계인 $3.8{\times}10^{-3}$ 이하를 만족하였다.

Keywords

References

  1. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, "High-speed visible light communication systems," IEEE Communications Magazine, vol. 51, no. 12, pp. 60-66, 2013. https://doi.org/10.1109/MCOM.2013.6685758
  2. M. S. Kim and K. R. Sohn, "Implementation of underwater visible light communication system interlinked with bluetooth," Journal of the Korean Society of Marine Engineering, vol. 38, no. 7 pp. 923-928, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.7.923
  3. K. R. Sohn and M. S Kim, "LED transceivers with beehive-shaped reflector for visible light communication," Journal of the Korean Society of Marine Engineering, vol. 38, no. 2 pp. 169-174, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.2.169
  4. K. Cui, G. Chen, Q. He, and Z. Xu, "Indoor optical wireless communication by ultraviolet and visible light," Proceedings of the SPIE, Free-Space Laser Communications IX, San Diego, CA, vol. 7464, pp. 1-9, 2009.
  5. C. H Yeh, Y. L Liu, and C. W Chow, "Real-time white-light phosphor-LED visible light communication (VLC) with compact size," Optics Express, vol. 21, no. 22, pp. 26192-26197, 2013. https://doi.org/10.1364/OE.21.026192
  6. H. L. Minh, D. O'Brien, G. Faulkner, and L. Zeng, "80 Mbit/s visible light communications using pre-equalized white LED," Proceedings of the 34th European Conference and Exhibition on Optical Communication, Brussels, Belgium, vol. 5-223, pp. 1-2, 2008.
  7. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, "High bandwidth visible light communications based on a post-equalization circuit," IEEE Photonics Technology Letters, vol. 26, no. 2, pp. 119-122, 2014. https://doi.org/10.1109/LPT.2013.2290026
  8. J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and W. Walewski, "513 Mbit/s visible light communications link based on DMT-modulation of a white LED," Journal of Lightwave Technology, vol. 28, no. 24, pp. 3512-3518, 2010. https://doi.org/10.1109/JLT.2010.2089602
  9. A. H. Azhar, T. A. Tran, and D. O'Brien, "Demonstration of high-speed data transmission using MIMO-OFDM visible light communications," Proceedings of the IEEE Globecom 2010 Workshop on Optical Wireless Communications, Miami, FL, vol. 1, pp. 1052-1056, 2010.
  10. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, "3.4 Gbit/s visible optical wireless transmission based on RGB LED," Optics Express, vol. 20, no. 26, pp. B501-B506, 2012. https://doi.org/10.1364/OE.20.00B501

Cited by

  1. A study on indoor visible light communication localization based on manchester code using walsh code vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.959
  2. Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE vol.40, pp.1, 2016, https://doi.org/10.5916/jkosme.2016.40.1.62
  3. A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.647