DOI QR코드

DOI QR Code

가스 확산층(GDL)내부의 물이 연료전지 성능에 미치는 영향

The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance

  • Park, Sang-Kyun (Division of Marine Information Technology, Korea Maritime and Ocean University)
  • 투고 : 2015.02.16
  • 심사 : 2015.04.09
  • 발행 : 2015.05.31

초록

본 연구에서는 연료전지 캐소드 가스 확산층에서의 물의 영향이 연료전지 성능에 미치는 영향을 검토하기 위하여 연료전지 스택의 부하 변동에 따른 가스 확산층에서의 2상 현상의 구현이 가능한 동적 모델을 개발하였다. 개발된 모델에 대하여 2상의 영향에 의한 연료전지 부하변동에 따른 연료전지 스택 성능, 가스 확산층 내부에서의 물 증기와 산소의 농도분포, 가스 확산층의 두께 및 다공성이 연료전지 스택 전압에 미치는 영향에 대하여 검토하였다. 그 결과 본 연구의 범위 내에서 연료전지 스택 전압은 부하에 관계없이 2상 모델이 1상 모델보다 낮아짐을 알 수 있다. 촉매층 부근 가스 확산층에서의 산소 농도는 가장 낮고 물 증기의 농도는 가장 높음을 알 수 있었다. 또한, GDL의 두께가 두꺼울수록 GDL의 다공성이 작을수록 연료전지 스택 전압이 낮아짐을 알 수 있었다.

In this paper, a dynamic model describing the 2 phase effect on the gas diffusion layer depending on load change of a fuel cell stack was developed to examine the effects of liquid water in fuel cell cathode gas diffusion layer on the fuel cell performance. For the developed model, 2 phase effect on the performance of a fuel cell stack depending on the load changes, concentration distribution of water vapor and oxygen inside a gas diffusion layer, the effect of the thickness and porosity of the gas diffusion layer on the fuel cell stack voltage were examined. As a result, a fuel cell stack voltage for the 2 phase model within the scope of the research become lower than that for the 1 phase model regardless of the load. Although oxygen molar concentration for the gas diffusion layer adjacent to the catalyst layer was the lowest, water vapor concentration is the highest. In addition, as thickness and porosity of the gas diffusion layer increased and decreased, respectively, the fuel cell stack voltage decreased.

키워드

참고문헌

  1. M. H. Kim, "Analysis on the technology R&D of the fuel cell systems for power generation in ships," Journal of the Korean Society of Marine Engineering, vol. 31, no. 8, pp. 924-931, 2007 (in Korean). https://doi.org/10.5916/jkosme.2007.31.8.924
  2. S. K. Park and M. E. Kim, "A study on thermal management of stack supply gas of solid oxide fuel cell system for ship applications," Journal of the Korean Society of Marine Engineering, vol. 35, no. 6, pp. 765-772, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.6.765
  3. K. C. T. Lawrence, W. Steven, M. Niall, U. Bernhard, and M. B. Ricardo, "Soild oxide fuel cell/gas turbine trigeneration system for marine application," Journal of Power Sources, vol. 196, no. 6, pp. 3149-3162, 2011. https://doi.org/10.1016/j.jpowsour.2010.11.099
  4. K. J. Park, H. J. Ji, and J. M. Bae, "Study of operation strategy for hybrid PEM fuel cell and supercapacitor," Transactions of the Korean Society fo Mechanical Engineers (B), vol. 30, no.8, pp. 756-763, 2006 (in Korean). https://doi.org/10.3795/KSME-B.2006.30.8.756
  5. S. Gunter, "Fuel cells going on-board," Journal of Power Sources, vol. 86, no. 1-2, pp. 61-67, 2000. https://doi.org/10.1016/S0378-7753(99)00414-0
  6. D. Y. Park, H. K. Yang, and J. S. Oh, "Power system using the fuel cell (PEMFC) for the leisure ship," Proceedings of the Korean Society for Power System Engineering Conference, 225-225, 2012 (in Korean).
  7. J. H. Lee, M. Y. Lee, S. S. Lee, I. S. Nam, and D. H. Lee, "An experimental study on the performance of PEMFC stack depending on operating conditions," Journal of the Korean Society of Marine Engineering, vol. 33, no. 5, pp. 770-777, 2009 (in Korean). https://doi.org/10.5916/jkosme.2009.33.5.770
  8. K. Y Kim, Y. J. Sohn, M. J. Kim, and W. Y. Lee, "Numerical study on the effects of GDL porosity on the PEMFC performance," Transactions of the Korean Society of Mechanical Engineers (B), vol. 33, no.12, pp. 1022-1030, 2009 (in Korean). https://doi.org/10.3795/KSME-B.2009.33.12.1022
  9. M. Khandelwal, S. H. Lee, and M. M. Mench, "One dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack," Journal of Power Sources, vol. 172, no. 2, pp. 816-830, 2007. https://doi.org/10.1016/j.jpowsour.2007.05.028
  10. M. Sundaresan and R. M. Moore, "Polymer electrolyte fuel cell stack thermal model to evaluate sub-freezing startup," Journal of Power Sources, vol. 145, no. 2, pp. 534-545, 2005. https://doi.org/10.1016/j.jpowsour.2004.12.070
  11. Y. Shan and S. Y. Choe, "Modeling and simulation of a PEM fuel cell stack considering temperature effects," Journal of Power Sources, vol. 158, no. 1, pp. 274-286, 2006. https://doi.org/10.1016/j.jpowsour.2005.09.053
  12. A. J. del Real, A. Arce, and C. Bordons, "Development and experimental validation of a PEM fuel cell dynamic model," Journal of Power Sources, vol. 173, no. 1, pp. 310-324, 2007. https://doi.org/10.1016/j.jpowsour.2007.04.066
  13. J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, and T. J. Harris, "Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell," Journal of the Electrochemical Society, vol. 142, issue. 1, pp. 1-8, 1995. https://doi.org/10.1149/1.2043866
  14. Z. H. Mo, X. J. Zhn, L. Y. Wei and G. Y. Cao, "Parameter optimization for a PEMFC model with a hybrid genetic algorithm," International Journal of Energy Research, vol. 30, no. 8, pp. 585-597, 2006. https://doi.org/10.1002/er.1170
  15. J. M. Correa, F. A. Farret, L. N. Canha and M. G. Simoes, "Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell," IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1103-1112, 2004. https://doi.org/10.1109/TIE.2004.834972
  16. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, "Polymer electrolyte fuel cell model," Journal of the Electrochemical Society, vol. 138, no. 8, pp. 2334-2342, 1991. https://doi.org/10.1149/1.2085971
  17. T. V. Nguyen and R. E. White, "A water and heat management model for proton-exchange-membrane fuel cells," Journal of the Electrochemical Society, vol. 140, no. 8, pp. 2178-2186, 1993. https://doi.org/10.1149/1.2220792
  18. D. A. McKay, W. T. Ott, and A. G. Stefanopoulou, ASME International Mechanical Engineering Congress & Exposition, no. IMECE 2005-81484, 2005.
  19. J. H. Nam and M. Kaviany, "Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium," International Journal of Heat and Mass Transfer, vol. 46, no. 24, pp. 4595-4611, 2003. https://doi.org/10.1016/S0017-9310(03)00305-3

피인용 문헌

  1. Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery vol.39, pp.8, 2015, https://doi.org/10.5916/jkosme.2015.39.8.838