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NUMBER SYSTEMS PERTAINING TO EUCLIDEAN RINGS

OF IMAGINARY QUADRATIC INTEGERS

Hyo-Seob Sim and Hyun-Jong Song*

Abstract. For a ring R of imaginary quadratic integers, using a concept

of a unitary number system in place of the Motzkin’s universal side divisor,

we show that the following statements are equivalent:
(1) R is Euclidean.

(2) R has a unitary number system.

(3) R is norm-Euclidean.
Through an application of the above theorem we see that R admits binary

or ternary number systems if and only if R is Euclidean.

1. Introduction

It is well known that among rings of imaginary quadratic integers, only nine
rings
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are principal ideal domains, which was conjectured by Gauss and settled com-
pletely by Stark [15]. Furthermore, only the first five examples of those are Eu-
clidean domains, whose Euclidean functions are induced by the norms; whereas,
the other four have no Euclidean functions whatsoever. A brilliant proof for the
latter claim was presented by Motzkin [12] around 1949, who came up with a
criterion for an integral domain to be Euclidean. But the proof seems too terse
for laymen. And filling details of Motzkin’s proof especially for non-existence of

Euclidean algorithm of ring Z
[
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√
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]
was presented by many researchers; for
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examples, see [2], [6], [18] and [19]. Most of their proofs are based on a concept
of the universal side divisor induced by the Motzkin’s criterion.

Complex base number systems received wide attention due to various reasons
such as data processing [8], [9] construction of Haar-typed wavelets [7], public
key cryptosystems [14],[11] and fractal figures rendered by the fractional parts of
number systems [1], [5] and [16]. In particular, Khmeinik [8] and Penny [13] in-
dependently showed that a number system with a base b = −1+

√
−1 and a digit

set D = {0, 1} in Z
[√
−1
]

yields so called the twin dragon. Knuth [10] proposed

another binary number system with a base b =
√
−2 and a digit set D = {0, 1}.

For applications in data processing Khmeinik [9] introduced a rather mysteri-

ous binary number system
(

1+
√
−7

2 , D = {0, 1}
)

which yields so called the the

tamed dragon. Similarly, we can get fractal figures by considering ternary num-

ber systems with the same digit set D = {−1, 0, 1} and bases 1 +
√
−2, 3+

√
−3

2

and 3+
√
−11
2 respectively. Two well known number systems in fractal geom-

etry are added in a family of number systems which we are interested in,
namely, (b = −2 + i, D = {0,±1,±i}) and

(
b = 2 + ω, D = {0,±1,±ω, ± ω2}

)
where i =

√
−1 and ω = 1+

√
−3

2 .
All number systems introduced in the above have common characteristics:

Each digit set D consists of zero and units of the ring R.

Such a number system is said to be unitary. Indeed, bases of unitary number
systems are referred to as the universal side divisors by Motzkin [12]. However,
it seems rather a unfamiliar expression (c.f. Remark 5.11 in [3]). Thus we
hopefully propose to use more tractable term, unitary number systems rather
than universal side divisors.

By way of the concept of ‘norm-Euclidean’ we may more transparently restate
the Motzkin’s contribution to Euclidean rings of imaginary quadratic integers
as follows:
Theorem 1.1.

Let R be a ring of imaginary quadratic integers. Then the following state-
ments are equivalent.

(1) R is Euclidean.
(2) R has a unitary number system.
(3) R is norm-Euclidean.

Novelty of the proof for implication from (2) to (3) in Theorem 1.1 lies in
the elementary observation that N(b), the norm of b, is equal to the number of
residue classes of R/(b). One would immediately realize that it is much simpler
and rudimentary than known proofs for the latter four principal ideal domains
to be non-Euclidean.

Observing that any binary or ternary number systems in a Euclidean ring
R of imaginary quadratic integers is necessarily unitary, we have a following
characterization of R:
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Theorem 1.2. A ring R of imaginary quadratic integers admits binary or
ternary number system if and only if R is Euclidean.

The proofs of the theorems will be presented at the end of section 2.

2. Revisit to the Motzkin’s contribution to Euclidean rings of
imaginary quadratic integers

Let R be a ring of imaginary quadratic integers. It is well known that either

R = Z
[√
−d
]

when d ≡ 1, 2 mod 4

or

R = Z
[

1 +
√
−d

2

]
when d ≡ 3 mod 4

for some square free positive integer d. For every r ∈ R, let N denote the norm
defined by N(r) = |r|2 = rr̄ where r̄ is the complex conjugate of r.

Let R× be the multiplicative group of units of a ring R and R×0 = R× ∪ {0}.
The following basic fact is well known; one can find the proof, some standard

textbooks in algebraic number theory, for example [17].
Lemma 2.1. Let R be a ring of imaginary quadratic integers. The group R×

of unities in R is listed as follow:
(i) R× = {±1,±i} for R = Z[i], where i =

√
−1;

(ii) R× = {±1,±ω, ± ω2} for R = Z [ω], where ω = 1+
√
−3

2 ;
(iii) except for the above two cases, R× = {±1}.

Lemma 2.2. Let R be a ring of imaginary quadratic integers. If b ∈ R \R×0 ,
then the number of cosets modulo (b) equals to N(b).

Proof. Note that R forms a lattice, a discrete additive subgroup of C generated

by an integral base {1, θ} where θ =
√
−d or 1+

√
−d

2 . Then an ideal (b) =
{rb | r ∈ R} forms a sub-lattice of generated by {b, bθ}. Let T be a torus,
namely a quotient group C/(b) and let F be the fundamental domain of T , a
choice of representatives of T in C. Then R∩F forms all residue classes modulo
b. Thus the number of all residue classes modulo b equals to the area of F which
equals to N(b). �

For a ring R of imaginary quadratic integers, each element b ∈ R \ R×0
contributes a base of a number system (b,D) by choosing a digit set

D = {di ∈ R | d1 = 0, d2, · · · , dN(b)}
consisting of a complete set of coset representatives of R/(b). In particular, if
D can be chosen to be a subset of R×0 , then a number system (b,D) is said to
be unitary.

An integral domain R is said to be Euclidean if there exists a function φ from
R \ {0} to the set of positive integers such that for every a, b ∈ R , there exist
q, r ∈ R such that a = qr + b with r = 0 or φ(r) < φ(b). Such a function φ is
called a Euclidean function. In particular, R is said to be norm-Euclidean if the
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norm N(·) of R is a Euclidean function. From the classifications of Euclidean
rings of imaginary quadratic integers, the following result is well known; for
example see [17].
Lemma 2.3. Among the rings of imaginary quadratic integers, the five rings
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are norm-Euclidean.

We here briefly recall Motzkin’s idea of dealing with Euclidean rings. Let
A0 = {0}. And inductively define An by the set of elements r ∈ R such that
every class modulo r has a representative in Aj for some j < n. Thus A1 = R×.
Then the Motzkin’s criterion is that R is Euclidean if and only if R = ∪∞n=0An.

We are now ready to give the proof of Theorem 1.1.

Proof. (1) =⇒ (2) : By Motzkin’s criterion, we observe that there must be b in
R−R×0 = R−A0 ∪A1 whose modulo classes have representatives in R×0 . Thus
b forms a base of a unitary number system.

(2) =⇒ (3) : Suppose that R is not norm-Euclidean. Then, in the case when
R = Z

[√
−d
]
, we have d > 3 from Lemma 2.3. Thus for each b = p+ q

√
−d ∈

R \R×0 , since either q 6= 0 or p 6= ±1 we have

N(b) = p2 + dq2 > 3

in this case. In the other case when R = Z
[
1+
√
−d

2

]
, we have d > 12 also from

Lemma 2.3. Therefore, in this case, for each b = p + q
√
−d ∈ R \ R×0 , since

either q 6= 0 or p 6= ±1 it follows that

N(b) =
(
p+

q

2

)2
+
d

4
q2 > 3.

From Lemma 2.3, neither R = Z [i] nor R = Z [ω]. Therefore, R× = {±1} from
Lemma 2.1. It follows from Lemma 2.2 that R has no unitary number systems.
(3)=⇒(1) : Obvious. �
Lemma 2.4. Let R be a ring of imaginary quadratic integers. If b is a base of
a unitary number system in R, then R/(b) is a finite field, whose order is one
of 2, 3, 4, 5 and 7.

Proof. Let b be a base of a unitary number system in R. Each nonzero element
of R/(b) is of the form u+ (b) for some unit element u in R×. Then 1/u+ (b)
is the inverse of u + (b). Therefore, the commutative ring R/(b) is a field. It
follows from Lemma 2.1 that the order of R/(b) is not greater than 7. �
Lemma 2.5. (i) Z[i] has a binary unitary number system.

(ii) Z[ω] has a ternary unitary number system.

Proof. (i) If b = p + qi, (p, q ∈ Z) is a base of a unitary number system, then
N(b) = p2 + q2 should be one of 2, 4 or 5. Equation N(b) = p2 + q2 = 2 yields
a solution b = 1 + i; (p, q) = (1, 1). For any binary number system (b,D) in
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R = Z[i], a digit set D, representatives of R/(b) can be replaced by a subset of
R×0 .

(ii) If b = p + qω, (p, q ∈ Z) is a base of a unitary number system ,then
N(b) = p2 +pq+q2 should be one of 3, 4 or 7. Equation N(b) = p2 +pq+q2 = 3
yields a solution b = 1 + ω; (p, q) = (1, 1). For any ternary number system
(b,D) in R = Z[ω] representatives D of R/(b) can be replaced by a subset of
R×0 because there are no elements r ∈ R with N(r) = 2. �

Remark 1. All quaternary number systems in Z[i] are not unitary.

Proof. Note that equation N(b) = p2 + q2 = 4 yields a solution b = 2; (p, q) =
(2, 0) and the other solutions yield the associates of b. Since 2 is not prime in
Z[i], Z[i]/(2) is not a field by Lemma 2.4. �

Observing that any binary or ternary number systems in a Euclidean ring of
imaginary quadratic integers is necessarily unitary, we can now give a proof of
Theorem 1.2.

Proof. Since ’only if’ part follows from Theorem 1.1, we assume that R is
Euclidean for ‘if’ part. If R is one of Z[i] and Z [ω], then it has binary or
ternary number systems by Lemma 2.5. If R is none of the two examples, then
R× = {±1} from Lemma 2.1 (iii). Since R is Euclidean, from Theorem 1.1 it
follow that there exists a base b of a unitary number system. By Lemma 2.2,
N(b) ≤ 3, and so the number system is binary or ternary. �
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