http://dx.doi.org/10.7858/eamj.2015.027

NUMBER SYSTEMS PERTAINING TO EUCLIDEAN RINGS OF IMAGINARY QUADRATIC INTEGERS

Hyo-Seob Sim and Hyun-Jong Song*

Abstract

For a ring R of imaginary quadratic integers, using a concept of a unitary number system in place of the Motzkin's universal side divisor, we show that the following statements are equivalent: (1) R is Euclidean. (2) R has a unitary number system. (3) R is norm-Euclidean.

Through an application of the above theorem we see that R admits binary or ternary number systems if and only if R is Euclidean.

1. Introduction

It is well known that among rings of imaginary quadratic integers, only nine rings

$$
\begin{aligned}
& \mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right], \\
& \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-43}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-67}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right]
\end{aligned}
$$

are principal ideal domains, which was conjectured by Gauss and settled completely by Stark [15]. Furthermore, only the first five examples of those are Euclidean domains, whose Euclidean functions are induced by the norms; whereas, the other four have no Euclidean functions whatsoever. A brilliant proof for the latter claim was presented by Motzkin [12] around 1949, who came up with a criterion for an integral domain to be Euclidean. But the proof seems too terse for laymen. And filling details of Motzkin's proof especially for non-existence of Euclidean algorithm of ring $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ was presented by many researchers; for

[^0]examples, see [2], [6], [18] and [19]. Most of their proofs are based on a concept of the universal side divisor induced by the Motzkin's criterion.

Complex base number systems received wide attention due to various reasons such as data processing [8], [9] construction of Haar-typed wavelets [7], public key cryptosystems [14],[11] and fractal figures rendered by the fractional parts of number systems [1], [5] and [16]. In particular, Khmeinik [8] and Penny [13] independently showed that a number system with a base $b=-1+\sqrt{-1}$ and a digit set $D=\{0,1\}$ in $\mathbb{Z}[\sqrt{-1}]$ yields so called the twin dragon. Knuth [10] proposed another binary number system with a base $b=\sqrt{-2}$ and a digit set $D=\{0,1\}$. For applications in data processing Khmeinik [9] introduced a rather mysterious binary number system $\left(\frac{1+\sqrt{-7}}{2}, D=\{0,1\}\right)$ which yields so called the the tamed dragon. Similarly, we can get fractal figures by considering ternary number systems with the same digit set $D=\{-1,0,1\}$ and bases $1+\sqrt{-2}, \frac{3+\sqrt{-3}}{2}$ and $\frac{3+\sqrt{-11}}{2}$ respectively. Two well known number systems in fractal geometry are added in a family of number systems which we are interested in, namely, $(b=-2+i, D=\{0, \pm 1, \pm i\})$ and $\left(b=2+\omega, D=\left\{0, \pm 1, \pm \omega \prime \pm \omega^{2}\right\}\right)$ where $i=\sqrt{-1}$ and $\omega=\frac{1+\sqrt{-3}}{2}$.

All number systems introduced in the above have common characteristics:

$$
\text { Each digit set } D \text { consists of zero and units of the ring } R \text {. }
$$

Such a number system is said to be unitary. Indeed, bases of unitary number systems are referred to as the universal side divisors by Motzkin [12]. However, it seems rather a unfamiliar expression (c.f. Remark 5.11 in [3]). Thus we hopefully propose to use more tractable term, unitary number systems rather than universal side divisors.

By way of the concept of 'norm-Euclidean' we may more transparently restate the Motzkin's contribution to Euclidean rings of imaginary quadratic integers as follows:

Theorem 1.1.

Let R be a ring of imaginary quadratic integers. Then the following statements are equivalent.
(1) R is Euclidean.
(2) R has a unitary number system.
(3) R is norm-Euclidean.

Novelty of the proof for implication from (2) to (3) in Theorem 1.1 lies in the elementary observation that $N(b)$, the norm of b, is equal to the number of residue classes of $R /(b)$. One would immediately realize that it is much simpler and rudimentary than known proofs for the latter four principal ideal domains to be non-Euclidean.

Observing that any binary or ternary number systems in a Euclidean ring R of imaginary quadratic integers is necessarily unitary, we have a following characterization of R :

Theorem 1.2. A ring R of imaginary quadratic integers admits binary or ternary number system if and only if R is Euclidean.

The proofs of the theorems will be presented at the end of section 2 .

2. Revisit to the Motzkin's contribution to Euclidean rings of imaginary quadratic integers

Let R be a ring of imaginary quadratic integers. It is well known that either

$$
R=\mathbb{Z}[\sqrt{-d}] \text { when } d \equiv 1,2 \bmod 4
$$

or

$$
R=\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right] \text { when } d \equiv 3 \bmod 4
$$

for some square free positive integer d. For every $r \in R$, let N denote the norm defined by $N(r)=|r|^{2}=r \bar{r}$ where \bar{r} is the complex conjugate of r.

Let R^{\times}be the multiplicative group of units of a ring R and $R_{0}^{\times}=R^{\times} \cup\{0\}$.
The following basic fact is well known; one can find the proof, some standard textbooks in algebraic number theory, for example [17].
Lemma 2.1. Let R be a ring of imaginary quadratic integers. The group R^{\times} of unities in R is listed as follow:
(i) $R^{\times}=\{ \pm 1, \pm i\}$ for $R=\mathbb{Z}[i]$, where $i=\sqrt{-1}$;
(ii) $R^{\times}=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\} \quad$ for $R=\mathbb{Z}[\omega]$, where $\omega=\frac{1+\sqrt{-3}}{2}$;
(iii) except for the above two cases, $R^{\times}=\{ \pm 1\}$.

Lemma 2.2. Let R be a ring of imaginary quadratic integers. If $b \in R \backslash R_{0}^{\times}$, then the number of cosets modulo (b) equals to $N(b)$.
Proof. Note that R forms a lattice, a discrete additive subgroup of \mathbb{C} generated by an integral base $\{1, \theta\}$ where $\theta=\sqrt{-d}$ or $\frac{1+\sqrt{-d}}{2}$. Then an ideal $(b)=$ $\{r b \mid r \in R\}$ forms a sub-lattice of generated by $\{b, b \theta\}$. Let T be a torus, namely a quotient group $\mathbb{C} /(b)$ and let F be the fundamental domain of T, a choice of representatives of T in \mathbb{C}. Then $R \cap F$ forms all residue classes modulo b. Thus the number of all residue classes modulo b equals to the area of F which equals to $N(b)$.

For a ring R of imaginary quadratic integers, each element $b \in R \backslash R_{0}^{\times}$ contributes a base of a number system (b, D) by choosing a digit set

$$
D=\left\{d_{i} \in R \mid d_{1}=0, d_{2}, \cdots, d_{N(b)}\right\}
$$

consisting of a complete set of coset representatives of $R /(b)$. In particular, if D can be chosen to be a subset of R_{0}^{\times}, then a number system (b, D) is said to be unitary.

An integral domain R is said to be Euclidean if there exists a function ϕ from $R \backslash\{0\}$ to the set of positive integers such that for every $a, b \in R$, there exist $q, r \in R$ such that $a=q r+b$ with $r=0$ or $\phi(r)<\phi(b)$. Such a function ϕ is called a Euclidean function. In particular, R is said to be norm-Euclidean if the
norm $N(\cdot)$ of R is a Euclidean function. From the classifications of Euclidean rings of imaginary quadratic integers, the following result is well known; for example see [17].
Lemma 2.3. Among the rings of imaginary quadratic integers, the five rings

$$
\mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right], \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]
$$

are norm-Euclidean.
We here briefly recall Motzkin's idea of dealing with Euclidean rings. Let $A_{0}=\{0\}$. And inductively define A_{n} by the set of elements $r \in R$ such that every class modulo r has a representative in A_{j} for some $j<n$. Thus $A_{1}=R^{\times}$. Then the Motzkin's criterion is that R is Euclidean if and only if $R=\cup_{n=0}^{\infty} A_{n}$.

We are now ready to give the proof of Theorem 1.1.
Proof. (1) $\Longrightarrow(2)$: By Motzkin's criterion, we observe that there must be b in $R-R_{0}^{\times}=R-A_{0} \cup A_{1}$ whose modulo classes have representatives in R_{0}^{\times}. Thus b forms a base of a unitary number system.
$(2) \Longrightarrow(3)$: Suppose that R is not norm-Euclidean. Then, in the case when $R=\mathbb{Z}[\sqrt{-d}]$, we have $d>3$ from Lemma 2.3. Thus for each $b=p+q \sqrt{-d} \in$ $R \backslash R_{0}^{\times}$, since either $q \neq 0$ or $p \neq \pm 1$ we have

$$
N(b)=p^{2}+d q^{2}>3
$$

in this case. In the other case when $R=\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$, we have $d>12$ also from Lemma 2.3. Therefore, in this case, for each $b=p+q \sqrt{-d} \in R \backslash R_{0}^{\times}$, since either $q \neq 0$ or $p \neq \pm 1$ it follows that

$$
N(b)=\left(p+\frac{q}{2}\right)^{2}+\frac{d}{4} q^{2}>3
$$

From Lemma 2.3, neither $R=\mathbb{Z}[i]$ nor $R=\mathbb{Z}[\omega]$. Therefore, $R^{\times}=\{ \pm 1\}$ from Lemma 2.1. It follows from Lemma 2.2 that R has no unitary number systems. $(3) \Longrightarrow(1)$: Obvious.
Lemma 2.4. Let R be a ring of imaginary quadratic integers. If b is a base of a unitary number system in R, then $R /(b)$ is a finite field, whose order is one of $2,3,4,5$ and 7 .
Proof. Let b be a base of a unitary number system in R. Each nonzero element of $R /(b)$ is of the form $u+(b)$ for some unit element u in R^{\times}. Then $1 / u+(b)$ is the inverse of $u+(b)$. Therefore, the commutative ring $R /(b)$ is a field. It follows from Lemma 2.1 that the order of $R /(b)$ is not greater than 7 .
Lemma 2.5. (i) $\mathbb{Z}[i]$ has a binary unitary number system.
(ii) $\mathbb{Z}[\omega]$ has a ternary unitary number system.

Proof. (i) If $b=p+q i,(p, q \in \mathbb{Z})$ is a base of a unitary number system, then $N(b)=p^{2}+q^{2}$ should be one of 2,4 or 5 . Equation $N(b)=p^{2}+q^{2}=2$ yields a solution $b=1+i ;(p, q)=(1,1)$. For any binary number system (b, D) in
$R=\mathbb{Z}[i]$, a digit set D, representatives of $R /(b)$ can be replaced by a subset of R_{0}^{\times}.
(ii) If $b=p+q \omega,(p, q \in \mathbb{Z})$ is a base of a unitary number system ,then $N(b)=p^{2}+p q+q^{2}$ should be one of 3,4 or 7 . Equation $N(b)=p^{2}+p q+q^{2}=3$ yields a solution $b=1+\omega ;(p, q)=(1,1)$. For any ternary number system (b, D) in $R=\mathbb{Z}[\omega]$ representatives D of $R /(b)$ can be replaced by a subset of R_{0}^{\times}because there are no elements $r \in R$ with $N(r)=2$.

Remark 1. All quaternary number systems in $\mathbb{Z}[i]$ are not unitary.
Proof. Note that equation $N(b)=p^{2}+q^{2}=4$ yields a solution $b=2 ;(p, q)=$ $(2,0)$ and the other solutions yield the associates of b. Since 2 is not prime in $\mathbb{Z}[i], \mathbb{Z}[i] /(2)$ is not a field by Lemma 2.4.

Observing that any binary or ternary number systems in a Euclidean ring of imaginary quadratic integers is necessarily unitary, we can now give a proof of Theorem 1.2.

Proof. Since 'only if' part follows from Theorem 1.1, we assume that R is Euclidean for 'if' part. If R is one of $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$, then it has binary or ternary number systems by Lemma 2.5. If R is none of the two examples, then $R^{\times}=\{ \pm 1\}$ from Lemma 2.1 (iii). Since R is Euclidean, from Theorem 1.1 it follow that there exists a base b of a unitary number system. By Lemma 2.2, $N(b) \leq 3$, and so the number system is binary or ternary.

References

[1] S. Akiyama and J.M. Thuswalender, A Survey on Topological Properties of Tiles Related to Number Systems, Geom. Dedica. 109 (2004), 89-105.
[2] O.A. Campoli, A principal ideal domain that is not a Euclidean domain, Amer. Math. Monthly, 95 (1988), no. 9, 868-871.
[3] K. Conrad, Remarks about Euclidean domains, an expository paper in Ring Thery.
[4] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, (1990).
[5] D. Goffinet, Number systems with a complex base: a fractal tool for teaching topology, Amer. Math. Monthly 98 (1991), no. 3, 249255.
[6] L. Guillen, A principal ideal domain that is not a Euclidean domain, a personal note in website.
[7] K. Groechenig and W.R. Madych, Multiresolution Analysis, Haar bases and self-similar tilings of R^{n}, IEEE Trans. Inform. Th. 38(2) Part2 (2)(1992), 556-568.
[8] S.I. Khmelnik, Specialized digital computer for operations with complex numbers, Questions of Radio Electronics (in Russian) XII (2)(1964).
[9] S.I. Khmelnik, Positional coding of complex numbers, Questions of Radio Electronics (in Russian) XII (9)(1966).
[10] D.E. Knuth, An Imaginary Number System, Communication of the ACM-3 (4) (1960).
[11] N. Koblitz, CM-curves with good cryptographic properties, Advances in CryptologyCRYPTO '91', LNCS 576, 1992, 279-287.
[12] T. Motzkin, The Euclidean Algorithm, Bull. Amer. Math. Soc., 55 (1949), 1142-1146.
[13] W. Penney, A "binary" system for complex numbers, JACM 12 (1965) 247-248.
[14] A. Petho, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Walter de Gruyter Publ. Comp., Eds.: A. Petho and etals, (1991), 31-44.
[15] H.M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.
[16] H.J. Song and B.S. Kang, Disclike Lattice Reptiles induced by Exact Polyominos, Fractals , 7 (1999), no. 1, 9-22.
[17] I. Stewart, D. Tall, Algebraic Number Theory, Chapman and Hall Mathematics Series, Second Edition.
[18] K.S. Williams, Note on non-Euclidean principal ideal domains, Amer. Math. Monthly, 48(1975), no. 3, 176-177.
[19] Jack C. Wilson, A Principal Ring that is Not a Euclidean Ring, Math. Mag. 46 (Jan 1973), 34-38.

Hyo-Seob Sim
Department of Applied Mathematics, Pukyong National University, Pusan 608737, Korea

E-mail address: hsim@pknu.ac.kr
Hyun-Jong Song
Department of Applied Mathematics, Pukyong National University, Pusan 608737, Korea

E-mail address: hjsong@pknu.ac.kr

[^0]: Received September 1, 2014; Accepted April 20, 2015.
 2010 Mathematics Subject Classification. Primary 11A63, 11R04, 11R27, 13F07 57M27, Secondary 28A80, 52C20.

 Key words and phrases. Euclidean rings, imaginary quadratic integers,Complex base number systems,Fractals.

 * This work was supported by a Research Grant of Pukyong National University (2014 year).

