DOI QR코드

DOI QR Code

Solution for Efficient Vital Data Transmission and Storing in m-Health Environment

m-Health 환경에서 효율적인 생체 데이터 전송 및 보관을 위한 방안

  • Lee, Seo-Joon (BK21PLUS, Department of Health Policy & Management, Graduate School, Korea University) ;
  • Cho, Gyoun-Yon (Health Science Institute, Korea University) ;
  • Song, Seung-Hwan (Health Science Institute, Korea University) ;
  • Jang, Jin-Soo (BK21PLUS, Department of Health Policy & Management, Graduate School, Korea University) ;
  • Lee, Kwang-In (Department of Health Policy & Management, Graduate School, Korea University) ;
  • Lee, Tae-Ro (BK21PLUS, Department of Health Policy & Management, Korea University)
  • 이서준 (고려대학교 대학원 보건과학과 BK21플러스 인간생명-사회환경상호작용융합사업단) ;
  • 조균연 (고려대학교 보건과학연구소) ;
  • 송승환 (고려대학교 보건과학연구소) ;
  • 장진수 (고려대학교 대학원 보건과학과 BK21플러스 인간생명-사회환경상호작용융합사업단) ;
  • 이광인 (고려대학교 대학원 보건과학과) ;
  • 이태노 (고려대학교 대학원 보건과학과 BK21플러스 인간생명-사회환경상호작용융합사업단 보건정책관리학부)
  • Received : 2015.03.11
  • Accepted : 2015.05.20
  • Published : 2015.05.28

Abstract

In order to tackle healthcare expenditure problems that affects a crucial part of government finances world-wide, m-Health emerged as a solution. However, recent poor outcomes of m-Health led to the need for reform in m-Health services. Therefore the purpose of this research is to propose a solution for efficient vital data transmission and storing in m-Health environment as part of such initiative. Methods included development of an efficient system and algorithm for vital data. For results, the compression ratio of the proposed solution was compared and evaluated. Results showed a compression ratio of 30.4. The proposed system is envisioned to contribute to the future vital data monitoring system in m-Health.

세계적으로 정부 재정에 상당한 영향을 주고 있는 보건의료 비용 문제를 해결하기 위해 m-Health가 등장하였다. 그러나 최근 저조한 m-Health의 결과물들은 m-Health 서비스 개혁의 필요성으로 이어졌다. 따라서 본 논문의 목적은 이와 같은 일환으로 m-Health 환경에서 효율적인 생체 데이터 전송 및 보관을 위한 방안을 제시하는 것이다. 연구방법으로는 생체 데이터를 효율적으로 전송 및 보관할 수 있는 시스템 및 알고리즘을 개발하였다. 분석 결과로 제시하는 솔루션의 효율성을 평가하기 위하여 전송되는 데이터의 압축률을 비교 평가하였다. 그 결과 본 논문의 압축률은 30.4배였다. 본 연구가 제시하는 시스템은 향후 m-Health에서 생체 정보를 모니터링 하는 시스템을 구축하도록 기여할 것으로 전망된다.

Keywords

References

  1. World Bank. Available from: http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS.
  2. Groupe Speciale Mobile Association, Improving the Evidence for Mobile Health, 2012.
  3. Parks Research, CSMG, McKinsey.
  4. Anglada-Martinez, H., G. Riu-Viladoms, M. Martin-Conde, M. Rovira-Illamola, J.M. Sotoca- Momblona, and C. Codina-Jane, Does mHealth increase adherence to medication? Results of a systematic review. International Journal of Clinical Practice, 2015.
  5. Krishnan, A., E.G. Ferro, D. Weikum, P. Vagenas, J.R. Lama, J. Sanchez, and F.L. Altice, Communication technology use and mHealth acceptance among HIV-infected men who have sex with men in Peru: implications for HIV prevention and treatment. Aids Care-Psychological and Socio-Medical Aspects of Aids/Hiv, 2015.
  6. Chib, A., M.H. van Velthoven, and J. Car, mHealth Adoption in Low-Resource Environments: A Review of the Use of Mobile Healthcare in Developing Countries. Journal of Health Communication, 2015.
  7. Lee, S.J., H.J. Sim, A.R. Lee, and T.R. Lee, The Design of Maternity Monitoring System Using USN in Maternity Hospital. The Journal of Digital Policy & Management, 2013.
  8. Lee, S.J. and T.R. Lee, Design of Remote Infusion Pump Monitoring System Using Wireless Network and RFID Technology. The Journal of Digital Policy & Management, 2013.
  9. Cho, G.Y., S.J. Lee, and T.R. Lee, Research on Enhancing Reliability of IT Convergence Technology Applied Emergency Management Information System. The Journal of Digital Policy & Management, 2013.
  10. Kim, D.S., S.J. Lee, and T.R. lee, Development of Smart Phone Application With Spectrometer for u-Health Service. The Journal of Digital Policy & Management, 2013.
  11. Cho, G.Y., S.J. Lee, and T.R. Lee, Research on a Solution for Efficient ECG Data Transmission in u-Healthcare Environment. The Journal of Digital Policy & Management, 2014.
  12. Cho, G.-Y., S.-J. Lee, and T.-R. Lee, An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems. Journal of Medical Systems, 2015.
  13. Lee Cc Fau - Hsu, C.-W., Y.-M. Hsu Cw Fau - Lai, A. Lai Ym Fau - Vasilakos, and A. Vasilakos, An enhanced mobile-healthcare emergency system based on extended chaotic maps. Journal of Medical Systems, 2013.
  14. Nilsen, W., S. Kumar, A. Shar, C. Varoquiers, T. Wiley, W.T. Riley, M. Pavel, and A.A. Atienza, Advancing the Science of mHealth. Journal of Health Communication, 2012.
  15. Park, S., W. Kim, and I. Ihm, Mobile collaborative medical display system. Computer Methods and Programs in Biomedicine, 2008.
  16. Yu, Y., J.J. Li, and J. Liu, M-HELP: A Miniaturized Total Health Examination System Launched on a Mobile Phone Platform. Telemedicine and E-Health, 2013.
  17. http://www.jhumhealth.org/about/mHealth101.
  18. Sannino, G., I. De Falco, and G. De Pietro, An Automatic Rules Extraction Approach to Support OSA Events Detection in an mHealth System. Ieee Journal of Biomedical and Health Informatics, 2014.
  19. Huang, A., W. Xu, Z. Li, L. Xie, M. Sarrafzadeh, X. Li, and J. Cong, System Light-Loading Technology for mHealth: Manifold-Learning-Based Medical Data Cleansing and Clinical Trials in WE-CARE Project. Ieee Journal of Biomedical and Health Informatics, 2014.
  20. Cho, G.Y., S.J. Lee, and T.R. Lee, Research on a Solution for Efficient ECG Data Transmission in IoT Environment. Korea Information Processing Society, 2014.
  21. Salomon, D., A Consice Introduction to Data Compression. 2008.
  22. Ziv, J. and A. Lempel, UNIVERSAL ALGORITHM FOR SEQUENTIAL DATA COMPRESSION. Ieee Transactions on Information Theory, 1977.
  23. Ziv, J. and A. Lempel, COMPRESSION OF INDIVIDUAL SEQUENCES VIA VARIABLE-RATE CODING. Ieee Transactions on Information Theory, 1978.
  24. Abo-Zahhad, M., A.F. Al-Ajlouni, S.M. Ahmed, and R.J. Schilling, A new algorithm for the compression of ECG signals based on mother wavelet parameterization and best-threshold levels selection. Digital Signal Processing, 2013.
  25. Elena, M., J. Quero, and I. Borrego. An optimal technique for ECG noise reduction in real time applications. in Computers in Cardiology, 2006.
  26. Goldberger, A.L., L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, and H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 2000.
  27. Petrolis, R., V. Gintautas, and A. Krisciukaitis, Multistage principal component analysis based method for abdominal ECG decomposition. Physiological Measurement, 2015.
  28. Mirmohamadsadeghi, L. and J.-M. Vesin, Respiratory rate estimation from the ECG using an instantaneous frequency tracking algorithm. Biomedical Signal Processing and Control, 2014.
  29. Maheshwari, S., A. Acharyya, P. Rajalakshmi, P.E. Puddu, and M. Schiariti, Accurate and reliable 3-lead to 12-lead ECG reconstruction methodology for remote health monitoring applications. Irbm, 2014.
  30. Li, Q., C. Rajagopalan, and G.D. Clifford, A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 2014.
  31. Cho, G.Y., Research on a Method for Efficient u-Healthacer Data Transmission in M2M Environment. Journal of Digital Convergence, 2014.

Cited by

  1. User Authentication Algorithm Guaranteeing Reusability of Biometric Data in BioPKI System vol.93, pp.1, 2017, https://doi.org/10.1007/s11277-016-3595-z
  2. Efficient Real-Time Lossless EMG Data Transmission to Monitor Pre-Term Delivery in a Medical Information System vol.7, pp.4, 2017, https://doi.org/10.3390/app7040366
  3. BAQALC: Blockchain Applied Lossless Efficient Transmission of DNA Sequencing Data for Next Generation Medical Informatics vol.8, pp.9, 2018, https://doi.org/10.3390/app8091471