DOI QR코드

DOI QR Code

Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea

동해 울릉분지 남서주변부에 발달하는 침식충전구조의 기원 및 분포

  • Park, Yong Joon (Department of Petroleum and Resources Technology, Korea University of Science and Technology (UST)) ;
  • Kang, Nyeon Keon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yi, Bo Yeon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoo, Dong Geun (Department of Petroleum and Resources Technology, Korea University of Science and Technology (UST))
  • 박용준 (과학기술연합대학원대학교 석유자원공학과) ;
  • 강년건 (한국지질자원연구원 석유해저연구본부) ;
  • 이보연 (한국지질자원연구원 석유해저연구본부) ;
  • 유동근 (과학기술연합대학원대학교 석유자원공학과)
  • Received : 2015.04.27
  • Accepted : 2015.05.22
  • Published : 2015.05.30

Abstract

Analysis of multi-channel seismic reflection profiles acquired from the southwestern margin of Ulleung Basin reveals that the cut and fill structures, which show U-shaped or V-shaped morphology, occur on variable size. The cut and fill structure mostly consists of fine-grained sediments on the well data and is characterized by transparent or semitransparent seismic facies on the seismic section. Such cut and fill structures dominantly occur in the syn-compressional megasequence (MSQ3), which was deposited during basin deformation of late Miocene, among the four megasequences of the study area. These cut and fill structures can be divided into three groups based on their size and formation time. The cut and fill structures of Group I were formed when Dolgorae structure was active, and occurred on a small scale. The cut and fill structures of group II were formed when both Dolgorae structure and Gorae V structure were active, and the number and size of those increased compared with group I. The cut and fill structures of group III were formed when Dolgorae structure was weaken gradually but Gorae V structure kept active, and the number and size of those decreased in comparison with group II. Consequently the cut and fill structures in the southwestern margin of Ulleung basin are interpreted as submarine canyon based on spatial distribution, size and fill sediment. They were controlled by the tectonic movement in response to basin closure and tectonic-induced sediment supply variation.

동해 울릉분지 남서주변부에서 취득한 2차원 다중채널 탄성파 탐사자료 해석결과에 의하면 연구지역에는 U자 또는 V자 형태의 침식충전구조가 다양한 규모로 발달한다. 시추공 자료에 의하면 침식충전구조를 채우고 있는 퇴적물은 주로 세립질 퇴적물로 구성되며, 탄성파 단면상에서 특정 내부 구조를 보여주지 않는 투명 혹은 반투명 음향상 특징을 보여주는 것과 잘 대비된다. 상기 특징을 갖는 침식충전구조는 연구지역에 분포하는 4개의 퇴적층군 중 후기 마이오세 분지변형 기간 동안 퇴적된 횡압력 동시성 퇴적층군(MSQ3)에 우세하게 분포한다. 이와 같은 침식충전구조는 발달규모와 시기에 따라 3개의 그룹으로 구분된다. 그룹 I에 속하는 침식충전구조는 돌고래 구조발달 시기에 대비되며, 소규모로 분포한다. 그룹 II에 포함되는 침식충전구조는 돌고래 구조와 고래V 구조가 동시에 발달한 것으로 알려진 시기에 형성되었으며, 발달개수와 규모가 그룹 I에 비해 크게 증가하였다. 그룹 III는 돌고래 구조의 발달은 점차 약화되었으나 고래V 구조의 영향은 지속된 시기에 형성되었으며, 침식충전구조의 발달개수와 규모는 그룹 II에 비해 크게 감소하였다. 상기 제시된 침식충전구조의 분포양상, 발달규모, 내부충전물의 특징에 의하면 연구지역에 분포하는 침식충전구조는 해저협곡으로 해석되며, 울릉분지의 닫힘과 관련된 지구조운동과 그에 따른 퇴적물 공급량의 영향을 받아 형성된 것으로 해석된다.

Keywords

References

  1. Boyd, R., Dalrymple, R. W., and Zaitlin, B. A., 2006, Estuarine and incised-valley facies models, in Posamentier, H. W., and Walker, R. G., Ed., Facies Models Revisited, SEPM Special Publication, 84, 171-235.
  2. Buchbinder, B., and Zilberman, E., 1997, Sequence stratigraphy of Miocene-Pliocene carbonate-siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): Effects of eustasy and tectonics, Sedimentary Geology, 112(1), 7-32. https://doi.org/10.1016/S0037-0738(97)00034-1
  3. Chough, S. K., and Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea (Sea of Japan), Geology, 15(1), 45-48. https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  4. Chough, S. K., Yoon, S. H., and Park, S. J., 1997, Stratal patterns in the southwestern margin of the Ulleung Basin off southeast Korea: sequence architecture controlled by back-arc tectonism, Geo-Marine Letters, 17(3), 207-212. https://doi.org/10.1007/s003670050028
  5. Chough, S. K., Lee, H. J., and Yoon, S. H., 2000, Marine geology of Korean seas, 2nd Ed., Elsevier.
  6. Dalrymple, R. W., 2006, Incised valleys in time and space: an introduction to the volume and an examination of the controls on valley formation and filling, in Dalrymple, R. W., Leckie, D. A., and Tillman, R. W., Ed., Incised valleys in time and space, SEPM Special Publication, 85, 5-12.
  7. Dalrymple, R. W., Boyd, R., and Zaitlin, B. A., 1994, History of research, types and internal organisation of incised-valley systems: introduction to the volume, in Dalrymple, R. W., Boyd, R., and Zaitlin, B. A., Ed., Incised-Valley Systems; Origin and Sedimentary Sequences, SEPM Special Publication, 51, 3-10.
  8. Druckman, Y., Buchbinder, B., Martinotti, G., Tov, R. S., and Aharon, P., 1995, The buried Afiq Canyon (eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times, Marine Geology, 123(3), 167-185. https://doi.org/10.1016/0025-3227(94)00127-7
  9. Farre, J. A., McGregor, B. A., Ryan, W. B. F., and Robb, J. M., 1983, Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon, in Stanley, D. J., and Moore, G. T., Ed., The shelfbreak: Critical Interface on Continental Margins, SEPM Special Publication, 33, 25-39.
  10. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., and Zhang, J., 2011, The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: architecture, sequence stratigraphy, and depositional processes, Marine and petroleum Geology, 28(9), 1690-1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
  11. Harris, P. T., and Whiteway, T., 2011, Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Marine Geology, 285(1-4), 69-86. https://doi.org/10.1016/j.margeo.2011.05.008
  12. He, Y., Xie, X., Kneller, B. C., Wang, Z., and Li, X., 2013, Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea, Marine and Petroleum Geology, 41, 264-276. https://doi.org/10.1016/j.marpetgeo.2012.03.002
  13. Iacono, C. L., Sulli, A., and Agate, M., 2014, Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin, Deep Sea Research Part II: Topical Studies in Oceanography, 104, 93-105. https://doi.org/10.1016/j.dsr2.2013.06.018
  14. Iacono, C. L., Sulli, A., Agate, M., Presti, V. L., Pepe, F., and Catalano, R., 2011, Submarine canyon morphologies in the Gulf of Palermo (Southern Tyrrhenian Sea) and possible implications for geo-hazard, Marine Geophysical Research, 32(1-2), 127-138. https://doi.org/10.1007/s11001-011-9118-0
  15. Ingle, J. C. Jr., 1992, Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128(2), 1190-1218.
  16. Jolivet, L., and Tamaki, K., 1992, Neogene kinematics in the Japan Sea region and volcanic activity of the Northeast Japan Arc, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128(2), 1311-1331.
  17. Kim, W. S., Cheong, D. K., and Kendall, C. G. S. C., 2007, Effects of in-phase and out-of-phase sediment supply responses to tectonic movement on the sequence development in the late Tertiary Southern Ulleung Basin, East (Japan) Sea, Computers & geosciences, 33(3), 299-310. https://doi.org/10.1016/j.cageo.2006.08.001
  18. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2006, Research on stratigraphy and tectonics of southeastern Korean offshore using seismic exploration technology, OAA2004005-2006(3), 332pp.
  19. Lee, G. H., and Suk, B. C., 1998, Latest Neogene-Quaternary seismic stratigraphy of the Ulleung basin, East sea (Sea of Japan), Marine Geology, 146(1), 205-224. https://doi.org/10.1016/S0025-3227(97)00123-0
  20. Lee, G. H., Kim, H. J., Han S. J., and Kim, D. C., 2001, Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back-arc basin, Marine and Petroleum Geology, 18(5), 615-634. https://doi.org/10.1016/S0264-8172(01)00016-2
  21. Lee, G. H., Kim, B., Chang, S. J., Huh, S., and Kim, H. J., 2004, Timing of trap formation in the southwestern margin of the Ulleung Basin, East Sea (Japan Sea) and implications for hydrocarbon accumulations, Geosciences Journal, 8(4), 369-380. https://doi.org/10.1007/BF02910473
  22. Lee, G. H., Yoon, Y., Nam, B. H., Lim, H., Kim, Y. S., Kim, H. J., and Lee, K., 2011, Structural evolution of the southwestern margin of the Ulleung Basin, East Sea (Japan Sea) and tectonic implications, Tectonophysics, 502(3), 293-307. https://doi.org/10.1016/j.tecto.2011.01.015
  23. Lofi, J., Rabineau, M., Gorini, C., Berne, S., Clauzon, G., De Clarens, P., Dos Reis, A. T., Mountain, G. S., Ryan, W. B., and Steckler, M. S., 2003, Plio-Quaternary prograding clinoform wedges of the western Gulf of Lion continental margin (NW Mediterranean) after the Messinian Salinity Crisis, Marine Geology, 198(3), 289-317. https://doi.org/10.1016/S0025-3227(03)00120-8
  24. Mitchell, J., Holdgate, G., Wallace, M., and Gallagher, S., 2007, Marine geology of the Quaternary Bass Canyon system, southeast Australia: a cool-water carbonate system, Marine geology, 237(1), 71-96. https://doi.org/10.1016/j.margeo.2006.10.037
  25. Mitchum Jr, R., Vail, P., and Sangree, J., 1977, Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in Payton, C. E., Ed., Seismic Stratigraphy-Applications to Hydrocarbon Exploration, AAPG Memoir, 26, 117-133.
  26. Obelcz, J., Brothers, D., Chaytor, J., ten Brink, U., Ross, S. W., and Brooke, S., 2014, Geomorphic characterization of four shelf-sourced submarine canyons along the US Mid-Atlantic continental margin, Deep Sea Research Part II: Topical Studies in Oceanography, 104, 106-119. https://doi.org/10.1016/j.dsr2.2013.09.013
  27. Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., and Le Drezen, E., 2004, The Danube submarine canyon (Black Sea): morphology and sedimentary processes, Marine Geology, 206(1), 249-265. https://doi.org/10.1016/j.margeo.2004.03.003
  28. Posamentier, H. W., 2001, Lowstand alluvial bypass systems: incised vs. unincised, American Association Petroleum Geologists Bulletin, 85(10), 1771-1793.
  29. Posamentier, H. W., and Walker, R. G., 2006, Deep-water turbidites and submarine fans, in Posamentier, H. W., and Walker, R. G., Ed., Facies Models Revisited, SEPM Special Publication, 84, 397-520.
  30. Pratson, L. F., and Coakley, B. J., 1996, A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows, Geological Society of America Bulletin, 108(2), 225-234. https://doi.org/10.1130/0016-7606(1996)108<0225:AMFTHE>2.3.CO;2
  31. Pratson, L. F., Ryan, W. B., Mountain, G. S., and Twichell, D. C., 1994, Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope, Geological Society of America Bulletin, 106(3), 395-412. https://doi.org/10.1130/0016-7606(1994)106<0395:SCIBDE>2.3.CO;2
  32. Reynaud, J. Y., Tessier, B., Proust, J. N., Dalrymple, R. W., Bourillet, J. F., De Batist, M., Lericolais, G., Berne, S., and Marsset, T., 1999, Architecture and sequence stratigraphy of a late Neogene incised valley at the shelf margin, southern Celtic Sea, Journal of Sedimentary Research, 69(2), 351-364. https://doi.org/10.2110/jsr.69.351
  33. Rise, L., Boe, R., Riis, F., Bellec, V. K., Laberg, J. S., Eidvin, T., Elvenes, S., and Thorsnes, T., 2013, The Lofoten-Vesteralen continental margin, North Norway: Canyons and mass-movement activity, Marine and Petroleum Geology, 45, 134-149. https://doi.org/10.1016/j.marpetgeo.2013.04.021
  34. Salem, A. M., Ketzer, J., Morad, S., Rizk, R. R. and Al-Aasm, I., 2005, Diagenesis and reservoir-quality evolution of incisedvalley sandstones: evidence from the Abu Madi gas reservoirs (Upper Miocene), The Nile Delta Basin, Egypt, Journal of Sedimentary Research, 75(4), 572-584. https://doi.org/10.2110/jsr.2005.047
  35. Sangree, J., and Widmier, J., 1979, Interpretation of depositional facies from seismic data, Geophysics, 44(2), 131-160. https://doi.org/10.1190/1.1440957
  36. Shepard, F. P., 1981, Submarine canyons: multiple causes and long-time persistence, American Association Petroleum Geologists Bulletin, 65(6), 1062-1077.
  37. Shin, G. S., 2000, Sequence stratigraphy of tertiary sedimentary sequences in southwestern margin of Ulleung basin, East Sea, Ph.D.thesis, Yonsei National University, 161pp.
  38. Shinn, Y. J., Yoo, D. G., Hwang, S. H., Park, Y. C., and Huh, D. G., 2012, A Preliminary Screening of $CO_2$ Geological Storage in Ullueng Basin, Korea, The Korean Society of Mineral and Energy Resources Engineers, 49(1), 47-58.
  39. Simms, A., Anderson, J., Milliken, K., Taha, Z., and Wellner, J., 2007, Geomorphology and age of the oxygen isotope stage 2 (last lowstand) sequence boundary on the northwestern Gulf of Mexico continental shelf, in Davies, R. J., Posamentier, H. W., Wood, L. J., and Cartwright, J. A., Ed., Seismic Geomorphology, GSL Special Publication 277, 29-46.
  40. Tamaki, K., Suyehiro, K., Allean, J., Ingle, J. C. Jr., and Pisciotto, K. A., 1992, Tectonic synthesis and implications of Japan Sea ODP Drilling, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128(2), 1333-1348.
  41. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., and Rahmanian, V. D., 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies, AAPG Methods in Exploration Series, 7.
  42. Wonham, J., Jayr, S., Mougamba, R., and Chuilon, P., 2000, 3D sedimentary evolution of a canyon fill (Lower Miocene-age) from the Mandorove Formation, offshore Gabon, Marine and Petroleum Geology, 17(2), 175-197. https://doi.org/10.1016/S0264-8172(99)00033-1
  43. Yoon, S. H., and Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), Geological Society of America Bulletin, 107(1), 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  44. Yoon, S. H., Park, S. K., and Chough, S. K., 2002, Evolution of sedimentary basin in the southwestern Ulleung Basin margin: Sequence stratigraphy and geologic structures, Geosciences Journal, 6(2), 149-159. https://doi.org/10.1007/BF03028286
  45. Yoon, S. H., Chough, S. K., and Park, S. J., 2003, Sequence model and its application to a Miocene shelf-slope system in the tectonically active Ulleung Basin margin, East Sea (Sea of Japan), Marine and petroleum geology, 20(10), 1089-1103. https://doi.org/10.1016/j.marpetgeo.2003.08.001
  46. Yoon, S. H., Sohn, Y. K., and Chough, S. K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan), Marine Geology, 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004
  47. Zaitlin, B. A., Dalrymple, R. W., and Boyd, R., 1994, The stratigraphic organization of incised-valley systems associated with relative sea-level change. in Dalrymple, R. W., Boyd, R., and Zaitlin, B. A., Ed., Incised-Valley Systems; Origin and Sedimentary Sequences, SEPM Special Publication, 51, 45-60.

Cited by

  1. Geophysical evidence and inferred triggering factors of submarine landslides on the western continental margin of the Ulleung Basin, East Sea vol.36, pp.6, 2016, https://doi.org/10.1007/s00367-016-0463-5
  2. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas vol.154, 2016, https://doi.org/10.1016/j.earscirev.2015.12.003