DOI QR코드

DOI QR Code

Review of Rice Quality under Various Growth and Storage Conditions and its Evaluation using Spectroscopic Technology

  • Joshi, Ritu (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Mo, Changyeun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Wang-Hee (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Lee, Seung Hyun (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • 투고 : 2015.04.02
  • 심사 : 2015.05.22
  • 발행 : 2015.06.01

초록

Purpose: Grain quality is a general concept that covers many characteristics, ranging from physical to biochemical and physiochemical properties. Rice aging during storage is currently a challenge in the rice industry, and is a complicated process involving changes in all of the above properties. Spectroscopic techniques can be used to obtain information on the quality of rice samples in a non-destructive manner. Methods: The objective of this review was to highlight the factors that contribute to rice quality and aging, and to describe various spectroscopic modalities, particularly vibrational and hyperspectral imaging, for the assessment of rice quality. Results: Starch and protein are the main components of the rice endosperm, and are therefore key factors contributing to eating and cooking quality. While the overall starch, protein, and lipid content in the rice grain remains essentially unchanged during storage, structural changes do occur. These changes affect pasting and gel properties, and ultimately the flavor of cooked rice. In addition, grain quality is significantly affected by growing and environmental conditions, such as water availability, temperature, fertilizer application, and salinity stress. These properties can be evaluated using spectroscopic techniques, and rice samples can be discriminated by using multivariate statistical analysis methods. Conclusion: Hyperspectral imaging and vibrational spectroscopy techniques have good potential for determining rice quality properties in a non-invasive manner, i.e., not requiring the introduction of instruments into the rice grain.

키워드

참고문헌

  1. Adu-Kwarteng, E., W. O. Ellis, I. Oduro and J. T. Manful. 2003. Rice grain quality: a comparison of local varieties with new varieties under study in Ghana. Food Control 14:507-514. https://doi.org/10.1016/S0956-7135(03)00063-X
  2. Ariana, D. P. and R. Lu. 2008. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part II. Performance of a prototype. Journal of Food Engineering 2:152-160.
  3. Bahmaniar, M. A. and G. A. Ranjbar. 2007. Response of rice (Oryza Sativa L.) cooking quality properties to nitrogen and potassium application. Pak. J. Biol. Sci. 10:1880-1884. https://doi.org/10.3923/pjbs.2007.1880.1884
  4. Barber, S. 1969. Basic studies on ageing of milled rice and application to discriminating quality factors. Inst. Agroquim. Technol. Aliment., Valencia, Spain. Project E025-AMS-(9) final report. U.S. Dep. Agric., ARS, Foreign Res. Tech. Program. Div. 189.
  5. Barber, S. 1972. Milled rice and changes during ageing. Am. Assoc. Cereal Chem., St Paul, MN, U.S.A. 215-263.
  6. Brosnan, T. and D. W. Sun. 2004. Improving quality inspection of food products by computer vision - a review. Journal of Food Engineering 61(1):3-16. https://doi.org/10.1016/S0260-8774(03)00183-3
  7. Cameron, D. K. and Y. Wang. 2005. A better understanding of factors that affect the hardness and stickiness of long grain rice. Cereal Chem. 82:113-119. https://doi.org/10.1094/CC-82-0113
  8. Chan, H., T. Ling, R. Juang, I. Ting, H. Sung and J. Su. 1990. Sucrose synthase in rice plants: growth-associated changes in tissue specific distribution. Plant Physiol. 94:1456-1461. https://doi.org/10.1104/pp.94.3.1456
  9. Cheng, F., H. Zhu, L. Zhong and Z. Sun. 2003. Effect of temperature on rice starch biosynthesis metabolism at grain-filling stage of early Indica rice. Agric. Sci. China 2:473-482.
  10. Cho, B. K., M. S. Kim, I. S. Beak, D. Y. Kim, W. H. Lee, J. Lim, H. Bae and Y. S.Kim. 2013. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biology and Technology 76: 40-49. https://doi.org/10.1016/j.postharvbio.2012.09.002
  11. Chrastil, J. 1990. Chemical and physicochemical changes of rice during storage at different temperatures. Journal of Cereal Science. 11:71-85. https://doi.org/10.1016/S0733-5210(09)80182-3
  12. Chrastil, J. 1994. Effect of storage on the physicochemical properties and quality factors of rice. In 'Rice Science and Technology', (W.E. Marshall and J.I. Wadsworth, eds), Marcel-Dekker, New York. 49-81.
  13. Daniels, M. J., B. P. Marks, T. J. Siebenmorgen, R. W. Menew and J. F. Meullenet. 1998. Effects of long-grain rough rice storage history on end use quality. J Food Sci 63: 832-835. https://doi.org/10.1111/j.1365-2621.1998.tb17910.x
  14. Delwiche, S.R., K. S. McKenzie and B. D. Webb. 1996. Quality characteristics in rice by near-infrared reflectance analysis of whole-grain milled samples.Cereal Chemistry 73(2):257-263.
  15. Deora, N. S., Aastha Deswal and H. N. Mishra. 2014. FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying. International Journal of Agricultural, Bio-system Science and Engineering Vol: 8 No: 3.
  16. Dhaliwal, Y. S., H. P. S. Nagi, G. S. Sidhu and K. S. Sekhon. 1986. Physicochemical, milling and cooking quality of rice as affected by sowing and transplanting dates. J. Sci. Food Agric. 37:881-887. https://doi.org/10.1002/jsfa.2740370910
  17. Dhaliwal, Y.S., K. S. Sekhon and H. P. S. Nagi. 1991. Enzymatic activities and rheological properties of stored rice. Cereal Chemistry. 68:18-21.
  18. Duan, M. and S. S. Sun. 2005. Profiling the expression of genes controlling rice grain (English abstract). Plant Mol. Biol. 59:165-178. https://doi.org/10.1007/s11103-004-7507-3
  19. Fageria, N. K., R. J. Wright, V. C. Baligar and J. R. P. Carvalho. 1990a. Upland rice response to potassium fertilization on a Brazilian oxisol. Nutr. Cycl. Agroecosyst. 21:141-147.
  20. Fageria, N. K., V. C. Baligar, R. J. Wright and J. R. P. Carvalho. 1990b. Lowland rice response to potassium fertilization and its effect on N and P uptake. Nutr. Cycl. Agroecosyst. 21:157-162.
  21. Feng, X., Qinghua Zhang, Peisheng Cong and Zhongliang Zhu. 2013. Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis. Talanta 115:548-555. https://doi.org/10.1016/j.talanta.2013.05.072
  22. Gowen, A. A., C. P. O'Donnell, P. J. Cullen, G. Downey and J. M. Frias. 2007. Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Food Science & Technology 18:590-598. https://doi.org/10.1016/j.tifs.2007.06.001
  23. Guo, Y., P. Mu, J. Liu, Y. Lu and Z. Li. 2007. QTL mapping and QxE interactions of grain cooking and nutrient qualities in rice under upland and lowland environments. J. Genet, Genomics 34:420-428. https://doi.org/10.1016/S1673-8527(07)60046-0
  24. Guo, Y., Weirong Cai, Kang Tu, Sicong tu, Shunmin Wang, Xiuling Zhu and Wei Zhang. 2013. Infrared and Raman spectroscopic characterization of structunal changes in albumin, globulin, glutelin and prolamin during rice aging. Agri. Food Chem. 61:185-192. https://doi.org/10.1021/jf303345r
  25. Hartley, R. D., W. H. Morrison III., D. S. Himmelsbach and W. S. Borneman. 1990. Cross-linking of cell wall phenolic arabinoxylans in graminaceous plants. Phytochem 29:3705-3709. https://doi.org/10.1016/0031-9422(90)85317-9
  26. Huang, J. W., J. T. Chen, W. P. Yu, L. F. Shyur, A. Y. Wang and H. Y. Sung. 1996. Complete structures of three rice sucrose synthase isogenes and differential regulation of their expressions. Biosci. Biotechnol. Biochem. 60: 233-239. https://doi.org/10.1271/bbb.60.233
  27. Huang, X., Nori Kurata, Xinghua Wei, Zi-Xuan Wang, Ahong Wang, Qiang Zhao, Yan Zhao and Kunyan Liu. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497-501. https://doi.org/10.1038/nature11532
  28. Hwang, S. K., Kangjin Lee and Hoeil Chung. 2012. Enhanced Raman spectroscopic discrimination of the geographical origins of rice samples via transmission spectral collection through packed grains. Talanta 101:488-494. https://doi.org/10.1016/j.talanta.2012.10.001
  29. Juliano, B. O. and A. M. Delmundo. 1965. Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol. 19:1006-1011.
  30. Juliano, B. O. and A. El-Shirbeeny. 1981. Physicochemical properties of Egyptian rice grown in saline and non-saline soils. 105-106 I Abstracts First National Congress of Biochemistry. The Congress, Cairo.
  31. Juliano, B. O. 1985a. Criteria and tests for rice grain qualities. In 'Rice Chemistry and Technology', (B.O. Juliano,ed.), Am. Assoc. Cereal Chem., St Paul, MN, U.S.A. 443-524.
  32. Juliano, B. O. 1985b. Polysaccharides, proteins, and lipids of rice, in: Juliano, B.O. (Ed.), Rice:Chemistry and Technology, second ed.American Association of Cereal Chemists, Inc., St. Paul, MN 59-174.
  33. Kang, H. J., I. K. Hwang, K. S. Kim and H. C. Choi. 2006. Comparison of the physicochemical properties and ultrastructure of japonica and indica rice grains. J. Agric. Food Chem. 54:4833-4838. https://doi.org/10.1021/jf060221+
  34. Kato, T., E. Katayama, S. Matsubara, Y. Omi and T. Matsuda. 2000. Release of allergenic proteins from rice grains induced by high hydrostatic pressure. Journal of Agricultural Food Chemistry 48:3124-3129. https://doi.org/10.1021/jf000180w
  35. Kim, M. S., Y. R. Chen and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE, 44(3): 721-729.
  36. Kim, M. S., A. M. Lefcourt, Y. R. Chen, D. E. Chan and K. Chao. 2002. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part II. Application of hyperspectral fluorescence imaging. Transactions of the ASAE, 45:2039-2047.
  37. Kim, W. T., X. Li and T. W. Okita. 1993. Expression of storage protein multigene families in developing rice endosperm. Plant Cell Physiol. 34:595-603.
  38. Kondo, M. and T. Okamura. 1937. Storage of rice. XVII. Comparative study of unhulled rice and hulled rice in regard to the changes of its qualities during long storage in straw bags. Ber Ohara Inst. Agric. Biol. Okayama Univ 7:483-490.
  39. Kong, W., C. Zhang, F. Liu, P. Nie and Y. He. 2013. Rice seed cultivar using Near-infrared hyperspectral imaging and multivariate data analysis. Sensors 13:8916-8927. https://doi.org/10.3390/s130708916
  40. Kunze, O. R. and M. S. U. Choudhury. 1972. Moisture absorption related to the tensile strength of rice. Cereal Chemistry 49:684-696.
  41. Lam, T. B. T., K. Iiyama and B. A. Stone. 1992. Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochem. 31:1179-1183. https://doi.org/10.1016/0031-9422(92)80256-E
  42. Leesawatwong, M., S. Jamjod, J. Kuo, B. Dell and B. Rerkasem. 2005. Nitrogen fertilizer increases seed protein and milling quality of rice. American Association of Cereal Chemists, St. Paul, MN.
  43. Li, X., V. R. Franceschi and T. W. Okita. 1993. Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72:869-879. https://doi.org/10.1016/0092-8674(93)90576-C
  44. Lin, W. M., S. M. Chang and C. Y. Lii. 1979. Studies on the changes of physicochemical properties of rice during storage. Bull Inst. Chem. Acad. Sin 26:13-23.
  45. Liu, L., D. Cozzolino, W. U. Cynkar, R. G. Dambergs, L. Janik, B. K. O'Neill, C. B. Colb and M. Gishen. 2008. Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries. Food Chem.106:781-786. https://doi.org/10.1016/j.foodchem.2007.06.015
  46. Wang. L., Dan Liu, Hongbin Pu, Da-wen Sun, Wenhong Gao and Zhenjie Xiong. 2014. Use of Hyperspectral imaging to discriminate the variety and quality of rice. Food Anal. Methods.
  47. Mahesh, S., A. Manickavasagan, D. S. Jayas, J. Paliwal and N. D. G. White. 2008. Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst Eng 101(1):50-57. https://doi.org/10.1016/j.biosystemseng.2008.05.017
  48. Matsukura, U., S. Kaneko and M. Momma. 2000. Method for measuring the freshness of individual rice grains by means of a color reaction of catallase activity. J Fpn Soc Food Sci Technol-Nippon Shokuhin. Kagaku Kogaku Kaishi 47:523-528. https://doi.org/10.3136/nskkk.47.523
  49. McCallum, J. A. and J. R. L. Walker. 1990. Phenolic biosynthesis during grain development in wheat (triticum aestivum L.). I. Changes in phenylalanineammoniolyase activity and soluble phenolic content. Journal of Cereal Science 11:35-49. https://doi.org/10.1016/S0733-5210(09)80179-3
  50. Molina, J., M. Sikora, N. Garud, J. M. Flowers, S. Rubinstein, A. Reynolds, P. Huang, S. Jackson, B. A. Schaal, C. D. Bustamante, A. R. Boyko and M. D. Purugganan. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences 108(20):8351. https://doi.org/10.1073/pnas.1104686108
  51. Monteiro, S., Y. Minekawa, Y. Kosugi, T. Akazawa and K. Oda. 2007. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing 62(1): 2-12. https://doi.org/10.1016/j.isprsjprs.2006.12.002
  52. Nagarajah, S., M. Jauffer and S. Willenberg. 1975. Timing of nitrogen application - its effect on nitrogen utilization and protein content of rice. Plant Soil 42:349-358. https://doi.org/10.1007/BF00010010
  53. Nangju, D. and S. K. De Datta. 1970. Effect of time of harvest and nitrogen level on yield and grain breakage in transplanted rice. Agronomy J. 62:468-474. https://doi.org/10.2134/agronj1970.00021962006200040011x
  54. Nishiba, Y., T. Sato and I. Suda. 2000. Convenient method to determine free fatty acid of rice using thin-layer chromatography and flame-ionization detection system. Cereal Chemistry 77:223-229. https://doi.org/10.1094/CCHEM.2000.77.2.223
  55. Okabe, M. 1979. Texture measurement of cooked rice and its relationship to the eating quality. J Texture Stud. 10:131-152. https://doi.org/10.1111/j.1745-4603.1979.tb00241.x
  56. Okita, T. W., Y. S. Hwang, J. Hnilo, W. T. Kim, A. P. Aryan and R. Larson. 1989. Structure and expression of the rice glutelin multigene family. J. Biol. Chem. 264:12573-12581.
  57. Ong, M.H. and J. M. V. Blanshard. 1995. Texture determinants of cooked, parboiled rice. 2. Physicochemical properties and leaching behavior of rice. Journal of Cereal Science 21:261-269. https://doi.org/10.1006/jcrs.1995.0029
  58. Osawa, T. 1999. Protective role of rice polyphenols in oxidative stress. Anticancer Res 19:3645-3650.
  59. Perdon, A.A., B. P. Marks, T. J. Siebenmorgen and N. B. Reid. 1997. Effects of rough rice storage conditions on the amylograph and cooking properties of medium grain rice cv. Bengal. Cereal Chemistry. 74:864-867. https://doi.org/10.1094/CCHEM.1997.74.6.864
  60. Perez, C.M. and B. O. Juliano. 1981.Texture changes and storage of rice. J Texture Stud. 12:321-333. https://doi.org/10.1111/j.1745-4603.1981.tb00542.x
  61. Perez, C., B. Juliano, S. Datta and S. Amarante. 1990. Effects of nitrogen fertilizer treatment and source and season on grain quality of IR64 rice. Plant Foods Hum. Nutr. 40:123-130. https://doi.org/10.1007/BF02193769
  62. Perez, C. M., B. O. Juliano, S. P. Liboon, J. M. Alcantara and K. G. Cassman. 1996. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. American Association of Cereal Chemists, St. Paul, MN.
  63. Salomonsson, A. C., O. Theander and P. Aman. 1980. Composition of normal and high-lysine barley. Swed. J Agri. Res 10:11-16.
  64. Satoh, H., T. Kumamaru, M. Ogawa, M. Siraishi, B. G. Im and M. Y. Son. 1995. Spontaneous 57 kDa mutant in rice. Rice Genet. Newsl. 12:194-196.
  65. Saulnier, L. and J. F. Thibault. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci. Food Agric. 79: 396-402. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<396::AID-JSFA262>3.0.CO;2-B
  66. Shahi, H. N., P. S. Gill, N. Singh, I. S. Thind and M. S. Maskina. 1975. Effect of seedling age at transplanting on rice in salinesodic soils of NW India. Exp. Agric. 13:169-175.
  67. Shen, X. N., Danting Yang, Yibin Ying, Bobin Li, Geqing Zhu and Jian Wu. 2010. Determination of Amino Acids in Chinese Rice Wine by Fourier Transform Near-Infrared Spectroscopy. J. Agric. Food Chem.58:9809-9816. https://doi.org/10.1021/jf1017912
  68. Shibuya, N. 1980. Recent investigations on the deterioration of rice during storage. Grain J (Natl Grains Authority Manila). 5:21-24.
  69. Shibuya, N., T. Iwasaki, H. Yanase and S. Chikubu. 1974. Studies on deterioration of rice during storage. I. Changes of brown rice and milled rice during storage. J Jpn. Soc. Food Sci. Technol. 21:597-603. https://doi.org/10.3136/nskkk1962.21.597
  70. Shin, M.G., S. H. Yoon, J. H. Rhee and T. W. Kwon. 1986. Correlation between oxidative deterioration of unsaturated lipid and n-hexanal during storage of brown rice. J Food Sci. 51:460-463. https://doi.org/10.1111/j.1365-2621.1986.tb11155.x
  71. Shoji, I. and H. Kurasawa. 1981. On viscosity characteristics of rice and rice starch against Brabender amylography. II. Effects of protein and fat on viscosity of glutinous and non-glutinous rice starches. Kaseigaku Zasshi 32: 167-171.
  72. Singh, N., K. S. Sekhon and A. Kaur. 1990. Effect of preharvest flooding of paddy on the milling and cooking quality of rice. J. Sci. Food Agric. 52:23-34. https://doi.org/10.1002/jsfa.2740520104
  73. Siscar-Lee, J. J., B. O. Juliano, R. H. Qureshi and M. Akbar. 1990. Effect of saline soil on grain quality of rice differing in salinity tolerance. Plant Foods Hum. Nutr. 40:31-36. https://doi.org/10.1007/BF02193777
  74. Sowbhagya, C.M. and K. R. Bhattacharya. 1976. Lipid autoxidation in rice. J Food Sci. 41:1018-1023. https://doi.org/10.1111/j.1365-2621.1976.tb14380.x
  75. Sun, D. W. 2010. Hyperspectral imaging for food quality analysis and control. San Diego, California, USA: Academic Press/Elsevier, ISBN 978-0-12-374753-2.
  76. Suzuki, Y., K. Ise, C. Li, I. Honda, Y. Iwai and U. Matsukura. 1999. Volatile components in stored rice (Oryza sativa L.) of varieties with and without lipoxygenase-3 in seeds. J Agric. Food Chem. 47:1119-1124. https://doi.org/10.1021/jf980967a
  77. Taira, H. 1970. Effect of fertilization on protein content in high yield rice. Jpn. J. Crop Sci. 39:200-203 https://doi.org/10.1626/jcs.39.200
  78. Takaiwa, F. 1987. Gene for a rice storage protein glutelin [Tanpakushitsu Kakusan Koso]. 30:247-260.
  79. Takano, K. 1989. Studies on the mechanism of lipidhydrolysing in rice bran. J Jpn. Soc. Food Sci. Technol. 36:519-524. https://doi.org/10.3136/nskkk1962.36.6_519
  80. Tsugita, T., T. Ohta and H. Kato. 1983. Cooking flavor and texture of rice stored under different conditions. Agric. Biol. Chem. 47:543-549. https://doi.org/10.1271/bbb1961.47.543
  81. Vidal, V., B. Pons, J. Brunnschweiler, S. Handschin, X. Rouau and C. Mestres. 2007. Cooking behavior of rice in relation to kernel physicochemical and structural properties. J. Agric. Food Chem. 55:336-346. https://doi.org/10.1021/jf061945o
  82. Villareal, R. M., A. P. Resurreccion, L. B. Suzuki and B. O. Juliano. 1976. Changes in physicochemical properties of rice during storage. Starch/Starke. 28:88-94. https://doi.org/10.1002/star.19760280304
  83. Villareal, R. M. and B. O. Juliano. 1978. Properties of glutelin from mature and developing rice grain. Phytochemistry 17:177-182. https://doi.org/10.1016/S0031-9422(00)94141-4
  84. Wang, A., W. Yu, R. Juang, J. Huang, H. Sung and J. Su. 1992a. Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Mol. Biol. 18:1191-1194. https://doi.org/10.1007/BF00047725
  85. Wang, M. B., D. Boulter and J. A. Gatehouse. 1992b. A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol. Biol. 19:881-885. https://doi.org/10.1007/BF00027086
  86. Wang, A., M. Kao, W. Yang, Y. Sayion, L. Liu and P. Lee. 1999. Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol. 40:800-807. https://doi.org/10.1093/oxfordjournals.pcp.a029608
  87. Wang, L., L. Dan, P. Hongbin, S. Da-Wen, G. Wenhong and X. Zhenjie. 2014. Use of hyperspectral imaging to discriminate the variety and quality of rice. Food Analytical Method. 8:515-523.
  88. Wei, X., F. Liu, Z. Qiu, Y. Shao and Y. He. 2013. Ripeness classification of astringent weight glutenin and barley D hordein. Gene 170:223-226.
  89. Williams P., P. Geladi, G. Fox and M. Manley. 2009. Maize kernel hardness classification by near-infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653(2):121-130. https://doi.org/10.1016/j.aca.2009.09.005
  90. Wopereis-Pura, M. M., H. Watanabe, J. Moreira and M. C. S.Wopereis. 2002. Effect of late nitrogen application on riceyield, grain quality and profitability in the Senegal River valley. Eur. J. Agro. 17:191-198. https://doi.org/10.1016/S1161-0301(02)00009-6
  91. Yamagata, H., T. Sugimoto, K. Tanaka and Z. Kasai. 1982. Biosynthesis of storage protein in developing rice seeds. Plant Physiol. 70:1094-1100. https://doi.org/10.1104/pp.70.4.1094
  92. Yanai, S., T. Ishitani and T. Kojo. 1979. Influence of gaseous environment on the hermetic storage of milled rice. Nippon Shokuhin Kogyo Gakkaishi. 26:145-150. https://doi.org/10.3136/nskkk1962.26.3_145
  93. Yasumatsu, K., S. Moritaka and S. Wada. 1966. Studies on cereals. V. Stale flavor of stored rice. Agric. Biol. Chem. 30:483-486. https://doi.org/10.1271/bbb1961.30.483
  94. Zhang, X., F. Liu, Y. He and X. Li. 2012. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Sensors 12: 17234-17246. https://doi.org/10.3390/s121217234
  95. Zupfer, J. M., K. E. Churchill, D. C. Rasmusson and R. G. Fulher. 1998. Variation in ferulic acid concentration among diverse barley cultivars measured by HPLC and microspectrophotometry. J Agric. Food Chem. 46: 1350-1354. https://doi.org/10.1021/jf9708103

피인용 문헌

  1. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging vol.159, 2017, https://doi.org/10.1016/j.biosystemseng.2017.03.015
  2. Detection of cucumber green mottle mosaic virus-infected watermelon seeds using a near-infrared (NIR) hyperspectral imaging system: Application to seeds of the “Sambok Honey” cultivar vol.148, 2016, https://doi.org/10.1016/j.biosystemseng.2016.05.014