DOI QR코드

DOI QR Code

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis

회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정

  • Yun, Hyun-Seok (Chungbuk National University, Dept. of Earth and Environmental Sciences) ;
  • Moon, Seong-Woo (Chungbuk National University, Dept. of Earth and Environmental Sciences) ;
  • Seo, Yong-Seok (Chungbuk National University, Dept. of Earth and Environmental Sciences)
  • 윤현석 (충북대학교 지구환경과학과) ;
  • 문성우 (충북대학교 지구환경과학과) ;
  • 서용석 (충북대학교 지구환경과학과)
  • Received : 2015.03.04
  • Accepted : 2015.03.16
  • Published : 2015.03.31

Abstract

A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.

단층은 굴착공사 중 발생하는 붕괴의 주요원인 중 하나이다. 하지만 단층대 내에서 주요 파괴면으로 작용하는 단층 핵은 파쇄암과 가우지가 불균질하게 분포하는 부분으로서 전단강도의 분포범위가 넓기 때문에 안정성 해석 시 경험적으로 결정되는 경우가 많다. 본 연구에서는 경주와 울산의 12개 지점에서 채취한 62개의 단층 핵 시료를 대상으로 직접전단시험과 입도 분석을 수행하였다. 실내시험으로 얻어진 결과를 이용하여 회귀 분석을 수행하여 수직응력별 입도에 따른 전단강도의 범위를 결정하였다. 자갈의 무게비는 전단강도와 비례하며, 실트 및 점토의 무게비는 반비례하는 것으로 나타났다. 결정계수는 대부분 약 0.7 이상으로 시료의 불균질성을 고려할 때 비교적 높게 나타났으며, 분석된 회귀모형의 95% 신뢰 구간을 설정하여 무게비에 따른 전단강도의 상한과 하한 범위를 결정하였다.

Keywords

References

  1. ASTM D3080-98. (1998), "Standard test method for direct shear test of soils under consolidated drained conditions", Annual Book of ASTM standard.
  2. Barton, N., Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mechanics, Vol. 10, Issue 1-2, pp. 1-54. https://doi.org/10.1007/BF01261801
  3. Brekke, T.L., Howard, T.R. (1972), "Stability problems caused by seams and faults", In Proceedings of the First North American Rapid Excavation and Tunnelling Conference, New York: AIME, pp. 25-41.
  4. Caine, J.S., Evans, J.P., Forster, C.B. (1996), "Fault zone architecture and permeability structure", Geology, Vol. 24, No. 11, pp. 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  5. Choi, J.H., Yang, S.J., Kim Y.S. (2009), "Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea", Journal of the Geological Society of Korea. Vol. 45, No. 1, pp. 9-28.
  6. Faulkner, D.R., Lewis, A.C., Rutter, E.H. (2003), "On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain", Tectonophysics, Vol. 367, Issue 3-4, pp. 235-251. https://doi.org/10.1016/S0040-1951(03)00134-3
  7. Goodman, R.E. (1970), "Deformability of joints, determination of the in situ modulus of deformation of rock", In Symposium in Denver, Colorado, pp. 174-196.
  8. Gudmundsson, A., Simmenes, T.H., Belinda, L., Philipp, S.L. (2010), "Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones", Journal of Structural Geology. Vol. 32, No. 11, pp. 1643-1655. https://doi.org/10.1016/j.jsg.2009.08.013
  9. Henderson, I.H.C., Ganerod, G.V., Braathen, A. (2010), "The relationship between particle characteristics and frictional strength in basal fault breccias: Implications for fault-rock evolution and rockslide susceptibility", Tectonophysics, Vol. 486, Issue 1-4, pp. 132-149. https://doi.org/10.1016/j.tecto.2010.02.002
  10. Heynekamp, M.R., Goodwin, L.B., Mozley, P.S., Haneberg, W.C. (1999), "Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for faultzone permeability and fluid flow. In: Haneberg, W.C., Mozley, P.S., Moore, J.C. and Goodwin, L.B. (Eds.), Faults and Subsurface Fluid Flow in the Shallow Crust". American Geophysical Union Geophysical Monograph, Vol. 113, pp. 27-50.
  11. Ikari, M.J., Saffer, D.M., Marone, C. (2009), "Frictional and hydrologic properties of clay-rich fault gouge", Journal of Geophysical Research, Vol. 114, B05409, doi:10.1029/2008JB006089.
  12. Jang, B.A., Kim, T.H., Jang, H.S. (2010), "Characterization of the three dimensional roughness of rock joints and proposal of a modified shear strength criterion", The Journal of Engineering Geology, Vol. 20, No. 3, pp. 319-327.
  13. KS F 2309. (2009), "Standard test method for amount of material in passing standard sieve 0.075 mm in soils", Korean Agency for Technology and Standards.
  14. KS F 2343. (2007), "Stnadard tset method for direct shear test of soils under consolidated drained conditions", Korean Agency for Technology and Standards.
  15. Kulatilake, P.H.S.W., Shou, G., Huang, T.H., Morgan, R.M. (1995), "New peak shear strength criteria for anisotropic rock joints", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 7, pp. 673-697. https://doi.org/10.1016/0148-9062(95)00022-9
  16. Lee, Y.J., Lee, I.K. (1972), "Explanatory text of the gelogical map of Eonyang sheet", Geology Survey of Korea.
  17. Moon, S.W., Yun, H.S., Kim, W.S., Na, J.H., Kim, C.Y., Seo, Y.S. (2014), "Correlation analysis between weight ratio and shear strength of fault materials using multiple regression analysis", The Journal of Engineering Geology, Vol. 24, No. 3, pp. 397-409. https://doi.org/10.9720/kseg.2014.3.397
  18. Park, Y.D., Yoon, H.D. (1968), "Explanatory text of the gelogical map of Ulsan sheet", Geology Survey of Korea.
  19. Sinha, U.N. (1993), "Behaviour of clayey gouge material along discontinuity surfaces in rock mass", PH.D. Thesis. IIT Roorkee, Uttarakahand, India, pp. 290.
  20. Sinha, U.N., Singh, B. (2000), "Testing of rock joints filled with gouge using a triaxial apparatus", International Journal of Rock Mechanics and Mining Sciences, Vol. 37, Issue 6, pp. 963-981. https://doi.org/10.1016/S1365-1609(00)00030-7
  21. Tateiwa, I. (1922), "Geological map of Choyo sheet". Geological Survey of Korea.
  22. Tesei, T., Collettini, C., Carpenter, B.M., Viti, C., Marone, C. (2012), "Frictional strength and healing behavior of phyllosilicate-rich faults", Journal of Geophysical Research, Vol. 117, B09402, doi:10.1029/2012JB009204
  23. Woo, I. (2012), "Laboratory study of the shear characteristics of fault gouges around Mt. Gumjung, Busan", The Journal of Engineering Geology, Vol. 22, No. 1, March, pp. 113-121. https://doi.org/10.9720/kseg.2012.22.1.113

Cited by

  1. Determination of representative elementary volume of fault core materials by particle distribution analysis pp.1598-7477, 2017, https://doi.org/10.1007/s12303-017-0033-5