DOI QR코드

DOI QR Code

A Recent Research Summary on Smart Sensors for Structural Health Monitoring

구조물 건전성 모니터링을 위한 스마트 센서 관련 최근 연구동향

  • 김은진 (울산과학기술대학교 도시환경공학부) ;
  • 조수진 (울산과학기술대학교 도시환경공학부) ;
  • 심성한 (울산과학기술대학교 도시환경공학부)
  • Received : 2015.03.03
  • Accepted : 2015.04.13
  • Published : 2015.05.30

Abstract

Structural health monitoring (SHM) is a technique to diagnose an accurate and reliable condition of civil infrastructure by collecting and analyzing responses from distributed sensors. In recent years, aging civil structures have been increasing and they require further developed SHM technology for development of sustainable society. Wireless smart sensor and network technology, which is one of the recently emerging SHM techniques, enables more effective and economic SHM system in comparison to the existing wired systems. Researchers continue on development of the capability and extension of wireless smart sensors, and implement performance validation in various in-laboratory and outdoor full-scale experiments. This paper presents a summary of recent (mostly after 2010) researches on smart sensors, focused on the newly developed hardware, software, and validation examples of the developed smart sensors.

구조물 건전성 모니터링은 센서로부터 구조물의 응답을 수집하고 분석하여 구조물의 정확한 상태를 진단하는 기술이다. 최근 노후화된 구조물의 증가로 인하여, 지속가능한 사회 발전을 위해 더욱 발달된 구조물 건전성 모니터링 기술이 요구되고 있다. 최신 구조물 건전성 모니터링 기술 중 하나인 무선 스마트 센서와 센서 네트워크 기술은 기존의 유선 방식의 모니터링 시스템과 비교하여 더욱 효율적이며 경제적인 모니터링 시스템의 구축을 가능하게 하는 기술이다. 최근까지도 관련 연구자들은 스마트 센서의 성능 및 확장성 향상을 위하여 연구개발을 진행하고, 다양한 실내, 실외 실험을 통한 성능 테스트를 진행하였다. 본 논문에서는 최근 (2010년 이후를 중심으로)에 개발된 스마트 센서의 하드웨어, 소프트웨어, 그리고 응용 사례들을 정리함으로써, 구조물 건전성 모니터링을 위한 스마트 센서의 최신 연구동향에 대해 소개하고자 한다.

Keywords

References

  1. Bhalla, S., and Soh, C. K. (2004), High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages, Ndt & E International, 37(1), 23-33. https://doi.org/10.1016/j.ndteint.2003.07.001
  2. Bilbao, A., Hoover, D., Rice, J., and Chapman, J. (2011), Ultra-low power wireless sensing for long-term structural health monitoring, Proceedings of SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 798109-1-798109-14.
  3. Bocca, M., Toivola, J., Eriksson, L. M., Hollmen, J., & Koivo, H. (2011), Structural health monitoring in wireless sensor networks by the embedded Goertzel algorithm, Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, IEEE Computer Society, 206-214.
  4. Buchli, B., Sutton, F., and Beutel, J. (2012), GPS-equipped wireless sensor network node for high-accuracy positioning applications, Wireless Sensor Networks, Springer Berlin Heidelberg, 179-195.
  5. Casciati, S., and Chen, Z. (2011), A multi-channel wireless connection system for structural health monitoring applications, Structural Control and Health Monitoring, 18(5), 588-600. https://doi.org/10.1002/stc.403
  6. Cho, S., Jo, H., Jang, S., Park, J., Jung, H. J., Yun, C. B., Spencer Jr, B. F., and Seo, J. W. (2010), Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses, Smart Structures and Systems, 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
  7. Dorvasha, S., Pakzada, S. N., Labuza, E., Changa, M., Lib, X., and Chengb, L. (2010), Validation of a wireless sensor network using local damage detection algorithm for beam-column connections, Proceedings of SPIE, 7467, 764719-1-764719-11.
  8. Giurgiutiu, V., Zagrai, A., and Bao, J. (2004), Damage identification in aging aircraft structures with piezoelectric wafer active sensors, Journal of Intelligent Material Systems and Structures, 15(9-10), 673-687. https://doi.org/10.1177/1045389X04038051
  9. Goertzel, G. (1958), An algorithm for the evaluation of finite trigonometric series, American mathematical monthly, 65(1), 34-35. https://doi.org/10.2307/2310304
  10. Ho, D. D., Nguyen, K. D., Yoon, H. S., and Kim, J. T. (2012), Multiscale acceleration-dynamic strain-impedance sensor system for structural health monitoring, International Journal of Distributed Sensor Networks, 2012, 1-17.
  11. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J. A., Sim, S. H., Jung, H. J., Yun, C. B., Spencer Jr, B. F., and Agha, G. (2010), Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation, Smart Structures and Systems, 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
  12. Jo, H., Park, J. W., Spencer Jr, B. F., and Jung, H. J. (2013), Develoment of high-sensitivity wireless strain sensor for structural health monitoring, Smart Structures and Systems, 11(5), 477-496. https://doi.org/10.12989/sss.2013.11.5.477
  13. Kane, M., Zhu, D., Hirose, M., Dong, X., Winter, B., Hackell, M., Lynch, J. P., Wang, Y., and Swartz, R. A. (2014), Development of an extensible dual-core wireless sensing node for cyber-physical systems, Proceedings of SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 90611U-1-90611U-19.
  14. Kim, D. Y., Yang, J. Y., Lee, I. S., Yoo, S. E., Seong, J. U., Lopez, T. S., and Do, Y. M. (2004), Embedded software technology for wireless sensor network, The Magazine of the IEEK, 31(11), 84-98.
  15. Kim, J. H., Lynch, J. P., Zonta, D., Yun, C. B., and Lee, J. J. (2009). Modal analysis of the Yeondae Bridge using a reconfigurable wireless monitoring system, Proceedings of the 10th International Conference on Structural Safety and Reliability (ICOSSAR'09), Osaka, Japan.
  16. Kim, J., and Lynch, J. P. (2012), Experimental analysis of vehicle-bridge interaction using a wireless monitoring system and a two-stage system identification technique, Mechanical Systems and Signal Processing, 28, 3-19. https://doi.org/10.1016/j.ymssp.2011.12.008
  17. Kim, J., Swartz, A., Lynch, J. P., Lee, J. J., and Lee, C. G. (2010), Rapid-to-deploy reconfigurable wireless structural monitoring systems using extended-range wireless sensors, Smart Structures and Systems, 6(5-6), 505-524. https://doi.org/10.12989/sss.2010.6.5_6.505
  18. Kurata, M., Kim, J., Zhang, Y., Lynch, J. P., Van der Linden, G. W., Jacob, V., Thometz, E., Hipley, P., and Sheng, L. H. (2011). Long-term assessment of an autonomous wireless structural health monitoring system at the new Carquinez Suspension Bridge, Proceedings of SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 798312-798312.
  19. Kurata, M., Lynch, J. P., van der Linden, G. W., Jacob, V., and Hipley, P. (2010), Preliminary study of a wireless structural monitoring system for the new carquinez suspension bridge, Proceedings of the Fifth World Conference on Structural Control and Monitoring, 1-14.
  20. Labuz, E. L., Chang, M., and Pakzad, S. (2010), Local damage detection in beam-column connections using a dense sensor network, Proceedings of 19th Annual Structures Congress, Orlando, FL, 3143-3154.
  21. Law, K. H., Wang, Y., Swartz, A., and Lynch, J. P. (2010), Wireless sensing and vibration control of civil structures, Proceedings of Wireless Information Technology and Systems (ICWITS) 2010, IEEE International Conference, 1-4.
  22. Lee, H. M., Kim, J. M., Sho, K., & Park, H. S. (2010). A wireless vibrating wire sensor node for continuous structural health monitoring, Smart Materials and Structures, 19(5), 055004. https://doi.org/10.1088/0964-1726/19/5/055004
  23. Linderman, L. E., Rice, J. A., Barot, S., Spencer Jr, B. F., and Bernhard, J. T. (2010), Characterization of wireless smart sensor performance, Journal of engineering mechanics, 136(12), 1435-1443. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000187
  24. Liu, L., Liu, S., and Yuan, F. G. (2012), Damage localization using a power-efficient distributed on-board signal processing algorithm in a wireless sensor network, Smart Materials and Structures, 21(2), 025005. https://doi.org/10.1088/0964-1726/21/2/025005
  25. Lynch, J. P. (2007), An overview of wireless structural health monitoring for civil structures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 345-372. https://doi.org/10.1098/rsta.2006.1932
  26. Lynch, J. P., and Loh, K. J. (2006), A summary review of wireless sensors and sensor networks for structural health monitoring, Shock and Vibration Digest, 38(2), 91-130. https://doi.org/10.1177/0583102406061499
  27. Lynch, J. P., Law, K. H., Kiremidjian, A. S., Carryer, E., Farrar, C. R., Sohn, H., Allen, D. W., Nadler, B., and Wait, J. R. (2004), Design and performance validation of a wireless sensing unit for structural monitoring applications, Structural Engineering and Mechanics, 17(3-4), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
  28. Lynch, J. P., Swartz, R. A., Zimmerman, A. T., Brady, T. F., Rosario, J., Salvino, L. W., and Law, K. H. (2009), Monitoring of a high speed naval vessel using a wireless hull monitoring system, Proceedings of the 7th International Workshop on Structural Health Monitoring, 9-11.
  29. Mascarenas, D. D., Flynn, E. B., Todd, M. D., Overly, T. G., Farinholt, K. M., Park, G., and Farrar, C. R. (2010), Development of capacitance-based and impedance-based wireless sensors and sensor nodes for structural health monitoring applications, Journal of Sound and Vibration, 329(12), 2410-2420. https://doi.org/10.1016/j.jsv.2009.07.021
  30. Min, J., Park, S., Yun, C. B., and Song, B. (2010) Development of a low-cost multifunctional wireless impedance sensor node, Smart Structures and Systems, 6(5-6), 689-709. https://doi.org/10.12989/sss.2010.6.5_6.689
  31. Nagayama, T., Sim, S. H., Miyamori, Y., and Spencer Jr, B. F. (2007), Issues in structural health monitoring employing smart sensors, Smart Structures and Systems, 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
  32. Nagayama, T., Spencer Jr, B. F., Mechitov, K. A., and Agha, G. A. (2009), Middleware services for structural health monitoring using smart sensors, Smart Structures and Systems, 5(2), 119-137. https://doi.org/10.12989/sss.2009.5.2.119
  33. Nguyen, K. D., Kim, J. T., and Park, Y. H. (2013), Long-term vibration monitoring of cable-stayed bridge using wireless sensor network, International Journal of Distributed Sensor Networks, 2013, 1-9.
  34. Ni, Y. Q., Li, B., Lam, K. H., Zhu, D., Wang, Y., Lynch, J. P., and Law, K. H. (2011), In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system, Smart Structures and Systems, 7(2), 83-102. https://doi.org/10.12989/sss.2011.7.2.083
  35. Pakzad, S. N. (2010), Development and deployment of large scale wireless sensor network on a long-span bridge, Smart Structures and Systems, 6(5-6), 525-543. https://doi.org/10.12989/sss.2010.6.5_6.525
  36. Park, G., Sohn, H., Farrar, C. R., and Inman, D. J. (2003), Overview of piezoelectric impedance-based health monitoring and path forward, Shock and Vibration Digest, 35(6), 451-464. https://doi.org/10.1177/05831024030356001
  37. Park, H. S., Shin, Y., Choi, S. W., and Kim, Y. (2013), An integrative structural health monitoring system for the local/global responses of a large-scale irregular building under construction. Sensors, 13(7), 9085-9103. https://doi.org/10.3390/s130709085
  38. Park, J. W., Jung, H. J., Jo, H., and Spencer, B. F. (2012), Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge, Energies, 5(9), 3450-3464. https://doi.org/10.3390/en5093450
  39. Peckens, C. A., and Lynch, J. P. (2013), Embedded linear classifiers on wireless sensor networks for damage detection, Proceedings of SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 86920V-1-86920V-10.
  40. Quinn, W., Angove, P., Buckley, J., Barrett, J., and Kelly, G. (2011), Design and performance analysis of an embedded wireless sensor for monitoring concrete curing and structural health, Journal of Civil Structural Health Monitoring, 1(1-2), 47-59. https://doi.org/10.1007/s13349-011-0005-9
  41. Rice, J. A., and Spencer Jr, B. F. (2008), Structural health monitoring sensor development for the Imote2 platform, Proceedings of In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 693234-693234.
  42. Rice, J. A., and Spencer Jr, B. F. (2009), Flexible smart sensor framework for autonomous full-scale structural health monitoring, Newmark Structural Engineering Laboratory Report Series 018, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/16300.
  43. Rice, J. A., Mechitov, K., Sim, S. H., Nagayama, T., Jang, S., Kim, R., Spencer Jr, B. F., Agha, G., and Fujino, Y. (2010), Flexible smart sensor framework for autonomous structural health monitoring, Smart Structures and Systems, 6(5-6), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
  44. Ruiz-Sandoval, M., Nagayama, T., and Spencer Jr, B. F. (2006), Sensor development using Berkeley Mote platform, Journal of Earthquake Engineering, 10(2), 289-309. https://doi.org/10.1080/13632460609350597
  45. Shimada, T. (1994), Estimating method of cable tension from natural frequency of high mode, Proceedings of JSCE, 501(1-29), 163-171.
  46. Sim, S. H., Li, J., Jo, H., Park, J. W., Cho, S., Spencer Jr, B. F., and Jung, H. J. (2014), A wireless smart sensor network for automated monitoring of cable tension, Smart Materials and Structures, 23(2), 025006. https://doi.org/10.1088/0964-1726/23/2/025006
  47. Sim, S. H., Spencer, B. F., Zhang, M., and Xie, H. (2010), Automated decentralized modal analysis using smart sensors, Structural Control and Health Monitoring, 17(8), 872-894. https://doi.org/10.1002/stc.348
  48. Spencer, B. F., Ruiz-Sandoval, M. E., and Kurata, N. (2004), Smart sensing technology: opportunities and challenges, Structural Control and Health Monitoring, 11(4), 349-368. https://doi.org/10.1002/stc.48
  49. Spencer, Jr. B. F., and Cho, S. (2011), Wireless smart sensor technology for monitoring civil infrastructure: technological developments and full-scale applications, Proceedings of 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM11+), Technopress, Seoul, Korea.
  50. Straser, E. G., and Kiremidjian, A. S. (1998), A modular, wireless damage monitoring system for structures. Stanford, CA, USA: John A. Blume Earthquake Engineering Center.
  51. Swartz, R. A., and Lynch, J. P. (2006), A multirate recursive ARX algorithm for energy efficient wireless structural monitoring, Proceedings of 4th World Conference on Structural Control and Monitoring, San Diego, CA, USA.
  52. Swartz, R. A., Jung, D., Lynch, J. P., Wang, Y., Shi, D., and Flynn, M. P. (2005), Design of a wireless sensor for scalable distributed in-network computation in a structural health monitoring system, Proceedings of 5th international workshop on structural health monitoring, Stanford, CA, USA, 1570-1577.
  53. Torbol, M., Kim, S., and Shinozuka, M. (2013), Long term monitoring of a cable-stayed bridge using DuraMote, Smart Structures and Systems, 11(5), 453-476. https://doi.org/10.12989/sss.2013.11.5.453
  54. Wang, Z., Pakzad, S., and Cheng, L. (2012), Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications, Proceedings of SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 83450L-1-83450L-8.
  55. Zhou, D., Ha, D. S., and Inman, D. J. (2010), Ultra low-power active wireless sensor for structural health monitoring, Smart Structures and Systems, 6(5-6), 675-687. https://doi.org/10.12989/sss.2010.6.5_6.675
  56. Zonta, D., Wu, H., Pozzi, M., Zanon, P., Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., and Corra, M. (2010), Wireless sensor networks for permanent health monitoring of historic buildings, Smart Structures and Systems, 6(5-6), 595-618. https://doi.org/10.12989/sss.2010.6.5_6.595

Cited by

  1. 고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발 vol.17, pp.5, 2016, https://doi.org/10.5762/kais.2016.17.5.1