
한국사물인터넷학회논문지 Vol. 1, No. 1, pp. 11-19, 2015 http://dx.doi.org/10.20465/KIOTS.2015.1.1.011

Implementation of Tile Searching and Indexing Management

Algorithms for Mobile GIS Performance Enhancement

Kang-Won Lee
1*

, Jin-Young Choi
2

1,2Dept. of Computer Science & Engineering, Korea University

Abstract The mobile and ubiquitous environment is experiencing a rapid development of information and
communications technology as it provides an ever increasing flow of information. Particularly, GIS is now
widely applied in daily life due to its high accuracy and functionality. GIS information is utilized through
the tiling method, which divides and manages large-scale map information. The tiling method manages map
information and additional information to allow overlay, so as to facilitate quick access to tiled data.
Unlike past studies, this paper proposes a new architecture and algorithms for tile searching and indexing
management to optimize map information and additional information for GIS mobile applications. Since this
involves the processing of large-scale information and continuous information changes, information is
clustered for rapid processing. In addition, data size is minimized to overcome the constrained performance
associated with mobile devices.
Our system has been implemented in actual services, leading to a twofold increase in performance in terms
of processing speed and mobile bandwidth.

Key Words : GIS, tile, Map, rendering method

교신 자 : 최진 (choi@formal.korea.ac.kr)

수일 : 2015년 12월 7일

1. Introduction

The mobile and ubiquitous environment has created

a smart workplace culture, in which users have access

to information regardless of time and place.

Furthermore, information and communications

technology, including communication networks,

terminals, and displays, have been developed to ensure

functionality in mobile devices. In particular, the

widespread use of technologies integrating lightweight

mobile devices and communications has altered the

lives of users.

Given the improved accuracy and wider coverage of

Geographic Information Systems(GIS) and Global

Positioning Systems(GPS), information and

communications technology has been integrated with

various multimedia for use in GIS services, offering

functions that extend beyond simple voice calls[1-2].

Although GIS in the past only provided information to

affiliated institutions, general users today are able to

freely access information in real-time traffic, during

travel time and for regional weather forecasts [3].

GIS functions by utilizing mutual information

between geographical data sets and maps. Providing

GIS information requires a method that facilitates the

management of large-scale map information. The tiling

method is commonly used to divide and manage maps.

Map information and additional information are divided

for easier management of the tiled data. While map

information is less susceptible to change, additional

information continuously changes. Thus, additional

information is overlaid onto the basic map information

한국사물인터넷학회논문지 제1권 제1호, 201512

after tiling. To provide map information and additional

information through mobile devices, developing a new

architecture that optimizes large-scale information in

consideration of mobile characteristics instead of

following conventional data processing is necessary.

Previous studies have provided location as additional

information for the mobile environment. This paper

goes a step further by proposing an architecture

capable of processing additional large-scale

information, similarly to fiber optics in communication

networks. Since fiber optics involvethe processing of

large-scale information and continuous information

changes, information clustering is required for rapid

processing. Minimization of data size also helps to

overcome the constrained performance associated with

mobile devices.

In this paper, we design and implement a new

architecture and algorithms that effectively provides

large-scale information for map services in mobile

devices. Through actual implementation by a

telecommunications company, we have verified the

superior performance of our system.

This paper is organized as follows. Section 2

presents traditional methods of map information

processing. The system design is described in section

3, followed by implementation results and analysis in

section 4. Lastly, section 5 offers a conclusion and

suggestions for future research.

2. Related Works

Rapid advancements in mobile network technology

have stimulated improvements in GIS technology,

which was previously limited to web services due to

the issue of large-scale map information processing.

However, rapid advancements in mobile devices and

increased usage have prompted efforts to overcome

resource weakness (memory capacity, CPU speed,

network bandwidth, battery power, etc.), resulting in a

diverse range of mobile applications[4].

In the early days, web-based GIS technology

provided users with maps and spatial information using

Active-X. Spatial information of maps were read as

vectors, assessed for location information and

converted to coordinates by indexing. The converted

data was processed based on client device resources.

In the Web 2.0 environment, Java replaced Active-X

for data processing. Google Maps is based on

Asynchronous JavaScript and XML (AJAX), which is

a simple JavaScript-based programming language. By

utilizing server device resources instead of client device

resources, users enjoy higher speeds and greater

simplicity. However, with part of the map information

provided by rendering, and location still reliant on the

traditional vector method, the poor performance and

lack of storage space when processing large-scale data

must be addressed.

These problems were resolved through a caching

tiling map server in [5], and verified with Google Maps.

In [5], map images are stored in the form of a simple

matrix to allow quick access and maximization of

space. Map information is stored in tiles with a matrix

notation. The tiles are then given attributes for

longitude, latitude and size before storing in the file

system of the cache server. The stored map tiles are

numbered according to zoom level and stored in

separate directories. However, as this approach leads to

an increase in directory depth, more access time is

required and the number of tile files grows

exponentially as zoom level increases. The increase in

directory paths causes problems in the operating system,

thus imposing a limit on the storage of map tiles.

To improve the directory organization mechanism of

[5], a tile feed architecture using tile keys was

proposed in [6]. The proposed method processes data

through direct access of directories in tile keys.

Although rapid processing is possible, it proceeds in the

order of information access and does not consider map

size. When applied to mobile devices, performance

eventually deteriorates as bandwidth occupancy

increases.

Implementation of Tile Searching and Indexing Management Algorithms for Mobile GIS Performance Enhancement 13

In [7], performance was improved by using Web GIS

based on Oracle MapViewer, addressing the complexity

of GIS and high costs. The package-based method of

[7] is difficult to customize and a disadvantage of Flash

is its low security.

The architecture suggested in this paper processes

information using Java API to ensure performance and

maximize space in mobile devices. Instead of AJAX

used in [5], we improve the tile key access method of

[6]. AJAX was not considered because greater security

is needed to protect information on business processes

contained in GIS, in addition to map information. Also,

more delays are experienced with AJAX when

changing map scale. Even if the improved rendering

method is used, a change in map scale takes up

tremendous resources and consumes mobile bandwidth

[8-11].

3. Design

Presently, GIS information provided through mobile

devices contains not only map information, but also

additional information such as road traffic and weather

forecasts. Required data must be provided within a

limited time frame due to space and time constraints.

Nevertheless, services available on mobile devices have

advanced from providing one-way information to

offering added value despite restrictions on time and

space. This paper proposes a new architecture to utilize

large-scale map information and additional information

in mobile devices.

First, we utilize the map tile rendering method, in

which the view size is comprised of the changed

portion. As presented in [Fig. 1] (a), the traditional

tiling method generates grids based on the central

value of the map and makes a tile request. When the

zoom level changes, the number of tile requests resent

is equivalent to the total number of tiles. By setting a

buffer under options, the grid may be larger than the

map size. Only neighboring tiles are requested during

map panning.

Instead of sending as many requests as the number

of tiles, however, we first obtain the tile index value

and difference (dx, dy) for the upper left corner, as

shown in [Fig. 1] (b). Based on the tile index requested

to the server, a tile of the same width and height is

formed and sent as an image. If a change in map level

or map panning results in a different map area, a new

request is made for the upper left tile. Usingtile

rendering, tile images are stored in the server after

being generated with XML style settings through the

DB and interface. The relevant tiles are sent out upon

request or generated from the rendering process, if

unavailable.

 (a) Traditional method (b) Proposed method

[Fig. 1] Tiling Method

Secondly, for efficient management of tile

information, we propose the tile searching method,

which allows quick access to directories even in mobile

devices. For improved performance, the background

map is processed using the raster method, while

facilities and other variable objects are subject to the

vector method.

1. Set the center at level 0 as the basic coordinates.- Initial
basic coordinates + coordinates during map panning = basic

display (extract central values from coordinates)

2. Calculate the latitude/longitude of the 4 corners of the
rectangle using function. Four values are derived from one

calculation. - Extract left and upper location of the screen ->

measure width and height of screen -> estimate required
number of tiles (map calculation) -> extract image paths

according to number of tiles (map extraction: base, line

calculation)
3. Search for the relevant tile (Lan_lat_2_index(α,β)).
α:Latitude/longitude(index), β: scale (1's complement), index:
logic for conversion to filename - Extract image if available
in the file cache- Image download from server / image

extraction / map overlay (base, line, etc.)

4. Decompress the encrypted image.
5. Generate an image for the requested area.

6. Send the generated image to the client.

[Fig. 2] Pseudo-code of the proposed method

한국사물인터넷학회논문지 제1권 제1호, 201514

3.1 Map Tile rendering Method

In general, map information can be viewed by

processing tile requests sequentially. If α, β is the

number of maps and γ is the number of layers, the

traditional method processes α, β, γseparately as shown

in [Fig. 3]. However, considering the limited bandwidth

of mobile devices, the number of tiles must be

minimized.

To manage the increase in the number of tiles

providing information in mobile devices, we make use

of coordinates to process the layers as a single tile,

thus optimizing performance. To provide large-scale

information on facilities including communication

optical maps, simplifying map tiles and other

information is essential. Our method minimizes the

number of tiles and simplifies information by merging

α, β, γ using server resources.

(a) Traditional method

(b) Proposed method

[Fig. 3] Rendering Method

Tiles are stored separately according to Base Map

and additional information (facilities information,

optical, etc.). Like the majority of Web GIS, our initial

settings are 256 x 256 at level 0.

While existing methods send rectangle values of

each tile to the map server, our proposed method

executes batch processing at the server. Since a γ

number of requests are made depending on the number

of layers, we avoid unnecessary use of bandwidth in

mobile devices.

3.2 Map Tile rendering Method

To search for tiles requested by the user, the current

location area of the client and scale level information is

sent to the map API. The image URL of the indexed

value is retrieved through the map server.

The map control of the map API connects to the

relevant URL, from which the map tile image is

downloaded and displayed on the user screen. A buffer

search is conducted followed by map rendering, which

facilitates mobile movement. Tile overlay is enabled by

generating user-defined layers in the web application.

Coordinate systems are matched for overlay based on

map API functions such as coordinate definition and

coordinate conversion.

public static const MISSING_TILE_URL:String="";
public static const DEFAULT_MAX_RESOLUTION:Number =
156543.03392804097;
public static const DEFAULT_NUM_ZOOM_LEVELS:uint = 21;
public var singleTileWidth:Number = 256; //tile
size(Width)
public var singleTileHeight:Number = 256; //tile size(Height)

Function GetURL(bounds:Bounds):String
var res:Number = this.map.resolution;
var x:Number = Math.round((bounds.left - this.maxExtent.left)/(res
* this.singleTileWidth)); //x tile index
var y:Number = Math.round((this.maxExtent.top - bounds.top) /
(res * this.singleTileHeight)) //y tile index
var z:Number = this.map.zoom;
var limit:Number = Math.pow(2, z);
var dx:Number = this.dx;
var dy:Number = this.dy;

if (y < 0 || y >= limit ||x < 0 || x >= limit) {
return HMOSM.MISSING_TILE_URL;

} else {
 x = ((x % limit) + limit) % limit;
 y = ((y % limit) + limit) % limit;
 var url:String = this.url;
 var path:String = "z=" +z + "&y=" +y + "&x=" +x + "&dx=" +
dx + "&dy=" + dy + "&xml=" + his._xmlNm;
 if (this.altUrls != null) {
 url = this.selectUrl(this.url + path, this.getUrls());
 }
 return url + path;
}

[Fig. 4] Algorithms of tile searching method

Implementation of Tile Searching and Indexing Management Algorithms for Mobile GIS Performance Enhancement 15

3.3 Map Tile Indexing

A complement is proposed to resolve the problem of

directory depth increase and to enable efficient tile

management. Like Google Maps, most tile-based map

information is based on Quad Tree to provide

scalability. When 20 zoom levels are considered,

tiles are produced. However, as the number of tiles

increases, the directory depth increases as well. Instead

of adopting the usual Quad Tree method, we index the

main keys for conversion into filenames before

processing the required images. Map information is

further broken down after area division.

The traditional method makes separate requests to

the server for rectangle values but the proposed

method reduces I/O time by retrieving all the files from

a single request. If nine tiles are required for the

screen, Google Maps processes 9*tile images, whereas

our proposed method provides 1*the number of tile

images.

The proposed tile indexing method first obtains the

central coordinates, and then calculates the

latitude/longitude of the four corners. Using the

coordinate system for directory management, the

values areindexed and converted to directory names.

At this point, directories exist for each layer (base

map layer, information layer, etc.). During information

processing, layers are overlaid and compressed into a

single image at the map server. UTM coordinates are

directly obtained from the URL and information is

retrieved from the directory if the relevant coordinates

are included in the directory name. The coordinate

system proposed in this paper allows more efficient

directory organization, resolving the problem of

directory name length caused by an increase in tile

depth, as in the case in Google Maps. Moreover, it is

no longer necessary to divide into separate maps and

create tile keys.

With the coordinates generated under the proposed

method, we can convertany coordinate system. The

number of tiles to be retrieved is calculated based on

the upper left coordinates and applied to the map size.

For example, if the information obtained is as

follows,http://sample.test:7002/tileserv/GetTile?z=17&y

=406369&x=894379&dx=5&dy=5&xml=basemap

We get 900125 from calculating index x and y, and

one's complement of 900125 is 900120. We applied a

hash by performing a bitwise operation on this value

with 0x01, resulting in -120 for the first value, 31 for

the second, -60 for the third, and -4 for the fourth. A

bitwise operation is performed with 0xff on the hash

data, thus creating a folder structure. We then search

for the image meta file. In the above case, we select the

136.meta file in the 214/181/196/31 directory at zoom

level 17.

During overlay, the raster and vector methods are

applied to varying information and fixed information,

respectively. Since the base map is lesssubject to

change, we consider changes for information in the

information layers and user-defined layers.

3.4 Map Cache Method

The map cache generates a pre-rendered image set

within the defined scale and stores the images in a

specific map server directory. The client retrieves the

map images of the corresponding scale through the

index of the web application. Tiles are provided in the

form of images for the location and scale requested

from the client.

Since the map cache displays pre-rendered images

based on the image index, it has a fast rendering speed

and reduces load on the GIS server when requesting

areas with multiple users and many map objects.

In this paper, we acquire cache storage space and

reduce rendering time through pre-rendering of tiles

containing facilities information at level 16 or higher.

Also, we apply a differentiated rendering technique for

varying objects stored in the cache. Instead of

changing the raster information for all tiles, we apply

the re-rendering technique only for tiles containing

altered information, thus reducing consumed request

time and load.

한국사물인터넷학회논문지 제1권 제1호, 201516

Function : setTileServLayerData

clearTileServImage()

tileServDownloader.panToTileServImage(tileServMapOffsetX,

tileServMapOffsetY);

tileServDownloader.downloadBitmap(Tile list, information, length,

count, width, zoom level)

tileServUrl = X index, Y index, Zoom level, number of tile X,

number of tile Y

final byte[] data = dataStream.toByteArray();

bmp = BitmapFactory.decodeByteArray(data,0,data.length);

//convert byte to image

setWMSImage(bmp);

Function : setTileServLayerData

tileBitmap =

this.tileProvider.getBaseMapTileFromCache(tile.tileCoords,

tile.zoomLevel, i);

tile.tileBitmap.add(new TileBitmap(tileBitmap));

tileProvider.requestMapTile(requestList);

urlString=layer.urlMaker_.makeRequestURL(tile x position, tile y

position, zoom level, layer name);

bmp=BitmapFactory.decodeByteArray(data, 0,data.length);

saveFile(tileFile, data);

[Fig. 5] Algorithms of map cache method

3.5 System Design

The system architecture is designed for the mobile

environment by separating tiling and map information.

The map server is utilized for tile generation, while the

rendering server transmits map areas (tile images of

scale levels) requested by the Flex mobile environment.

Two methods are used in the design of large-scale

map information for better performance. The raster

method is applied to facilities to facilitate quick access.

Since optical line location is often newly created and

deleted, data is stored using the vector method and

grouped according to layers (base map layer,

information layer and user-defined layer). The

information layer executes batch processing, and the

user-defined layer provides information changes in

real-time

[Fig. 6] System Component Design

4. Implementation

We have proposed a map processing method to

efficiently provide map information in the mobile

environment, and improved processing speed by

minimizing the bandwidth of map information. Our

proposed methods are currently being implemented in

commercial services. The web server is HP rp3440

(1GHz*4, 20GB mem), and the rendering server is HP

DL570 (1GHz*4, 8GB mem). We are using LTEphones

as mobile devices and Oracle 10g (for itanum) as the

spatial DB. SMALLWORLD GIS data was rendered

during implementation, and logical information

pertaining to paths synchronized. Comparisons have

been made for the measurement target based on the tile

key access method proposed in [6]. 1) Use a remote

object to call a java class from Flex. 2) In Flex, obtain

the area to be displayed based on the base map.

3)When a request is made for the obtained area, the

server conducts a search and submits results to Flex.

4) Feature items are generated in the form of polygon,

line, point, etc. and styles are set. 5)Feature layers are

individually generated and added on top of the map.

Layers are sent to the bottom of the hierarchical

structure in the order of addition. For instance, if a

polygon is generated after point feature,

PolygonFeature is overlaid onto PointFeature.

Implementation of Tile Searching and Indexing Management Algorithms for Mobile GIS Performance Enhancement 17

(a)Traditional method

(b) Proposed method

[Fig. 7] Comparison of results in mobile devices

Delays occur by phase if tiles are individually

retrieved as shown in [Fig. 7]. However, the proposed

method enables viewing under a single frame.

In general, tiles take up space that is four times

greater for a scale of x2 according to zoom level,

resolution, and range. As such, they are saved as

images or in compressed format depending on the

storing of tile images.

As shown in <Table 1>, the proposed method is

able to store data 1/2 times the original size if basic

information is applied to a 21-level scale. The

traditional method also uses compression, but the

method proposed in this paper increases the efficiency

of compression with separate processing of images and

data.

<Table 1> Comparison of data size (byte) after rendering

Original data size
(Byte)

(Zoom level)

Traditional
rendering
method[6]
(Byte) (a)

Proposed
method (Byte)

(b)

Enhancement
rate

(%)(a/b*100)
5TB (21 Level)
4TB (18 Level)
3TB (16 Level)
2TB (14 Level)
1TB (12 Level)

4TB
3TB
2.5TB
2TB
1TB

2TB
1.8TB
1.5TB
1.3TB
0.9T

B200.0
166.7
166.7
153.8
11.1

To efficiently provide map information through

mobile devices, information can be divided into layers,

or grouped at the server as we have proposed. For a

specific area based on a zoom level of 16, we compared

bandwidth and view speed by varying the level from 0

to 21. <Table 2> illustrates that the proposed method

improves bandwidth occupancy and view speed from

level 12 onwards. The view speed was measured with

consideration of the appropriateness of directory

organization for searches.

<Table 2> shows that the traditional method has

low bandwidth occupancy but is not as fast in view

speed. Since data is received and merged at the client,

delays occur in data viewing depending on the

performance of the mobile device. On the other hand,

our proposed method provides data by merging layers

at the server beforehand, resulting in high bandwidth

but improved speed. Because a fast view speed is

essential for mobile tasks, our method is clearly more

effective.

<Table 2> Comparison of bandwidth occupancy (MB) and

view speed (sec)

Zoom
level (z)

Bandwidth occupancy (MB)

Traditional
method[6] (a)

Proposed
method (b)

Enhancement rate
(%)(a/b*100)

0~5
6~10
11~15
16~21

60
75
100
150

55
70
85
102

109.1
107.1
117.6
147.5

Zoom
level (z)

Bandwidth occupancy (MB)

Traditional
method[6] (a)

Proposed
method (b)

Enhancement rate
(%)(a/b*100)

0~5
6~10
11~15
16~21

0.2
0.3
2.0
4.0

0.3
0.5
1.2
2.0

-34.0
-40.0
166.7
200.0

<Table 3> summarizes the proposed method in

terms of tile rendering, searching, map cache, and tile

indexing. With the exception of tile searching, the

traditional method and proposed method differ in the

use of servers for tile merging and data processing.

한국사물인터넷학회논문지 제1권 제1호, 201518

Type Traditional method [6] Proposed method
Tile rendering

Tile searching

Tile indexing

Map cache

Transmission by tile
(in order)

Tile key (Tile feed
architecture)

Quad tree

Entire cache
Recaching of changes

Transmission after tile
merge

Tile key

Key indexing (using
complement)

Pre-rendering cache
for tiles containing
additional information
Cache changes only

<Table 3> Differences between proposed and traditional

methods

5. Future Works and Conclusions

With mobile devices becoming more widespread, we,

in consideration of web-based services expanding to

the mobile environment, have proposed a new

architecture and implemented functions to provide

information more efficiently Web-based services have

provided information with guaranteed performance by

the client. However, RIA (Rich Input Application)

-based optimized data must be utilized to overcome the

limited performance of mobile devices.

By processing key management using the proposed

image index method, we were able to retrieve and

provide rendered images at a higher speed. Also, the

GIS server load was reduced even when making

requests to areas with multiple users and many map

objects. The cache map technique was modified to

provide large-scale data while reflecting mobile

characteristics, thus allowing the efficient use of mobile

devices. However, further research is needed to expand

functions for processing of changes in rendering

information in order to enable mutual changes in large

volumes of information.

References

[1] Bin Jiang, Xiaobai Yao, “Location Based Services and GIS

in Perspective,” Location Based Services and

TeleCartography, Lecture Notes in Geoinformation and

Cartography, Section I, pp.27-45, 2007.

[2] Carl-Fredrik Sørensen, Alf Inge Wang, Reidar Conradi,

“Support of Smart Work Processes in Context Rich

Environments,” International Federation for Information

Processing(IFIP), 191, pp.15-30, 2005.

[3] Daoxun Xia, Xiaoyao Xie, Yang Xu, “Web GIS server

solutions using open-source software,” Open-source

Software for Scientific Computation (OSSC), 2009 IEEE

International Workshop on IEEE Conferences, pp.135-138,

2009.

[4] Tim Verbelen, Raf Hens, Tim Stevens, Filip De Turck,

Bart Dhoedt. “Adaptive Online Deployment for Resource

Constrained Mobile Smart Clients,” Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering, MobileWireless

Middleware, Operating Systems, and Applications, Part 3,

vol.48, pp.115-128, 2010.

[5] Zao Liu,Pierce, M E,Fox G C, Devadasan, N.“Implementing

a caching and tiling map server: a Web 2.0 case study,”

Collaborative Technologies and Systems, pp.247-256, May,

2007.

[6] Yiming Liu, Erik Wilde. Scalable and Mashable,

“Location-Oriented Web Services,” Web Engineering

Lecture Notes in Computer Science, vol.6189, pp.307-321,

2010.

[7] Wu Kehe, Bai Xuewei and Wang Xiaohui, “Power Web

GIS Based on Oracle MapViewer,” Internet Technology

and Applications, 2010 International Conference on IEEE

Conferences, pp.14, 2010.

[8] Quan Sh,i Hengshan Wang, Hui Wang, Jianping Chen,

“Design of WebGIS Rendering Engine Based on

Silverlight-based RIA,” Intelligent Computation

Technology and Automation (ICICTA), 2011 International

Conference on IEEE Conferences, vol.1, pp.1050-1053,

2011.

[9] Hoseok Ryu, Insuk Park, Soon J Hyun, Dongman Lee, “A

Task Decomposition Scheme for Context Aggregation in

Personal Smart Space,” Lecture Notes in Computer

Science, vol.4761, pp.20-29, 2007.

[10] René Meier, Anthony Harrington, Thomas Termin, Vinny

Cahill, “A Spatial Programming Model for Real Global

Implementation of Tile Searching and Indexing Management Algorithms for Mobile GIS Performance Enhancement 19

Smart Space Applications,” Distributed Applications and

Interoperable Systems Lecture Notes in Computer Science,

vol.4025, pp.16-31, 2006.

[11] Shah Rukh Humayoun, Tiziana Catarci, Massimiliano de

Leoni, Andrea Marrella, Massimo Mecella, Manfred

Bortenschlager, Renate Steinmann, “Universal Access in

Human-Computer Interaction. Applications and Services,”

Lecture Notes in Computer Science, vol.5616, pp.343-352,

2009.

Kang-Won Lee [정회원]
▪1997. 2 : BSc and MSc from

Korea University in Computer

Science

▪1997.2～ : Software Programmer

in Network Company

< 심분야>

mobile communication, network management systems

