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Abstract

In the case of a high-valuable asset, the Operation and Maintenance (O&M) phase requires heavy charges and more efforts than the installation
(construction) phase, because it has long usage life and any accident of an asset during this period causes catastrophic damage to an industry.
Recently, with the advent of emerging Information Communication Technologies (ICTs), we can get the visibility of asset status information
during its usage period. It gives us new challenging issues for improving the efficiency of asset operations. One issue is to implement the
Condition-Based Maintenance (CBM) approach that makes a diagnosis of the asset status based on wire or wireless monitored data, predicts the
assets abnormality, and executes suitable maintenance actions such as repair and replacement before serious problems happen. In this study, we
have addressed several aspects of CBM approach: definition, related international standards, procedure, and techniques with the introduction of
some relevant case studies that we have carried out.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
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1. Introduction

In general, maintenance is defined as all technical and manage-
rial actions taken during usage period to maintain or restore the
required functionality of a product or an asset. There have been
various classifications of maintenance policies. Simply, mainte-
nance policies can be divided into breakdown maintenance and
preventive maintenance. Some references, e.g. Erbe et al. [11]
identified maintenance types in detail. In our study the maintenance
policy is classified into three types: breakdown maintenance
(corrective maintenance), preventive maintenance, and Condition-
Based Maintenance (CBM). In the breakdown maintenance, the
maintenance action is taken after some problems such as break-
downs in a product are found while the preventive maintenance
periodically checks a product with a certain interval in order to
prevent the abnormality of the product. The CBM may be similar
to the preventive maintenance in the sense that its goal is to prevent
product abnormality in advance before abnormality occurs. Note
that some previous works put the CBM method under the
preventive maintenance policy with the Time-Based Maintenance

(TBM) method. However, the CBM approach is different from the
time-oriented approach of preventive maintenance. It focuses on
the prediction of degradation process of the product, which is based
on the assumption that most abnormalities do not occur instanta-
neously, and usually there are some kinds of degradation process
from normal states to abnormalities [12]. Hence, unlike breakdown
maintenance and preventive maintenance, the CBM focuses on not
only fault detection and diagnostics of components but also
degradation monitoring and failure prediction. Generally, CBM
can be treated as a method used to reduce the uncertainty of
maintenance activities and is carried out according to the require-
ments indicated by the equipment condition [27]. Thus, the CBM
enables us to identify and solve problems in advance before
product damage occurs. In industry systems, any product damage
can lead to serious results. In this respect, the CBM is very
attractive method for the industry operating high-valued assets.
Until now it has been difficult to achieve effectiveness of

maintenance operations because there is no information visibility
during product usage period. However, recently, with emerging
technologies such as Radio Frequency IDentification (RFID),
various sensors, Micro-Electro-Mechanical System (MEMS), and
wireless tele-communication, and Supervisory Control And Data
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Acquisition (SCADA), Product Embedded Information Devices
(PEID) are expected to be rapidly used for gathering and
monitoring the status data of products during their usage period.
Advancements in information technology have added accelerated
growth in the CBM technology area by enabling network
bandwidth, data collection and retrieval, data analysis, and decision
support capabilities for large data sets of time series data [29].
Under the new environment, we can gather the product status and
usage data related to distributing route, usage conditions, failure,
maintenance or service events, and so on. These data enable us to
diagnose the degradation status of the product in a more exact way.
Therefore, using this information gives us new challenging issues
for improving the efficiency of product maintenance operations.
We can make a diagnosis of product status, predict products
abnormality, and execute proactive maintenance, i.e. do CBM.

Since a critical failure or degradation of the product during its
operation can seriously damage the belief of customers on the
product reliability, the maintenance enhancement for preventing
this kind of failure or degradation in advance has precedence over
any other things in a company. For this purpose, recently lots of
manufacturing companies are trying to adopt new technologies and
get more accurate real-time information regarding product status
during its usage period. As diverse information becomes available,
the CBM approach to use them for preventing a critical failure or
degradation in advance has been highlighted. Although most
machine maintenance today is still either purely reactive (fixing
or replacing equipment after it fails) or blindly proactive, world-
class companies are moving forwards towards ‘predict-and-prevent'
maintenance [19], which is very similar to the goal of CBM. From
this perspective, this study will deal with several aspects of CBM.
Although there have been some literature review works on CBM,
this study has some different features compared to previous works:
First, this study deals with various aspects of CBM based on the
survey of relevant previous works. It contains its definition,
advantage and disadvantage, procedure, related standards, diag-
nostics and prognostics methods, and so on. Second, this study
refines the definition of CBM considering several aspects of CBM,
e.g. procedure and its advantage, and clarifies the difference
between diagnostics and prognostics. Finally, this study addresses
some discussion issues when implementing CBM based on several
CBM case studies that we have carried out.

This study is organized as follows. First, in Section 2, we
address the definition, related international standards, and
previous studies associated with CBM. Furthermore, we intro-
duce relevant case studies that we have carried out until so far.
In addition, we make a discussion about the implementation of
CBM approach. Finally this study is concluded with the
discussion on contributions and limitations in Section 3.

2. Several aspects on condition based maintenance
approach

2.1. Definition

The term, CBM, is often used with other terms such as
Predictive Maintenance (PdM), Prognostic and Health Man-
agement (PHM), on-condition maintenance which comes from

the U.S. Department of Defense and Department of Energy,
online monitoring, or risk based maintenance. Actually, the
concept of CBM was first introduced by the Rio Grande
Railway Company in late 1940s and initially it was called
predictive maintenance [29]. There are various definitions on
the concept of CBM. Bengtsson [3] shortly described it as
preventive maintenance based on performance and/or para-
meter monitoring and the subsequent actions. According to
British Standard, CBM is defined as the maintenance policy
carried out in response to a significant deterioration in a
machine as indicated by a change in a monitored parameter of
the machine condition. According to the definition of Kotha-
masu et al. [21], CBM is a decision making strategy where the
decision to perform maintenance is reached by observing the
condition of the system and/or its components. These defini-
tions address the goal of CBM, but they have the limitation in
describing the CBM procedure. On the other hand, Butcher [4]
defined CBM as a set of maintenance actions based on real-
time or near real-time assessment of equipment condition,
which is obtained from embedded sensors and/or external tests
& measurements taken by portable equipment. This definition
includes technical aspect of CBM compared to previous ones,
but lack of the descriptions on CBM goal.
In this study, we define CBM as a maintenance policy which

do maintenance action before product failures happen, by
assessing product condition including operating environments,
and predicting the risk of product failures in a real-time way,
based on gathered product data.

2.2. Advantage and disadvantage

In general, there are lots of stakeholders during asset
lifecycle. For example, owner of asset, operators (users),
external agents (maintenance service provider), regulators
related to health and safety (government), and so on. From
each viewpoint, the interests and objective of CBM will be
different.
We can think of what the advantages and disadvantages of

CBM approach are. Until so far, there are lots of advantages of
CBM reported in previous works or from industries. Amongst
them, first and foremost, the CBM gives us prior warning of
impending failure and increased precision in failure prediction.
Thus, it can effectively reduce the product failure compared to
other approaches. From the viewpoint of product safety
management, the CBM is useful for the product types where
safety is considered important since it can increase safety by
detecting problems in advance before serious problems occur,
which leads to the improvement of customer satisfactions due
to the high quality assurance. Hence, the CBM makes
maintenance service providers avoid the risk cost due to the
dissatisfaction of product quality. In general, by the main-
tenance contract, a maintenance service provider usually has
the responsibility for keeping the quality of product in a
customer during the warranty period. Hence, the CBM is very
attractive for the maintenance service provider.
Furthermore, it allows end users to perform better planned

maintenance, reduce or eliminate unnecessary inspections, and

J.-H. Shin, H.-B. Jun / Journal of Computational Design and Engineering 2 (2015) 119–127120



decrease time-based maintenance intervals with confidence [6].
The use of CBM systems in industry has been reported to be
one way of decreasing maintenance budgets [3]. It can reduce
costs by avoiding unnecessary maintenance and enabling
maintenance to be scheduled more efficiently [30]. According
to Lee [24], annually savings from widespread deployment of
CBM technology in the United States alone is estimated at $35
billion.

In addition, the CBM can optimize the production process
and improve its productivity. It provides the ability for the
system to continue operating as long as it is performing within
predefined performance limits [29]. It also aids in diagnostic
procedures as it is relatively easy to associate the failure
to specific components through the monitored parameters.
It can be linked to adaptive control thus facilitating process
optimization.

However, in spite of these benefits of CBM, it has some
limitations. According to Hashemian and Bean [15], nearly
30% of industrial equipment does not benefit from CBM. First
of all, the investment cost for CBM is usually high. To
implement the CBM, it is prerequisite to install and use
monitoring equipment and to develop some level of modeling
or decision making strategy. Also, to implement the CBM, not
only investment of hardware but also training on staff is
required. It will cause fairly expensive cost. Furthermore,
savings potential with CBM approach seldom shows from the
management viewpoint. In addition, the technologies and
technical methods for the CBM approach are still in their
infancy. It means that there are some limitations in ensuring
the accuracy of diagnostics and prognostics.

2.3. Literature review

There have been several previous works related to the
review of CBM. For example, Bengtsson [3] investigated
standards and standardization proposals related to CBM and
described several organizational aspects considered when
deciding to implement CBM. Jardine et al. [17] reviewed the
research on diagnostics and prognostics of mechanical systems
implementing CBM with an emphasis on models, algorithms
and technologies for data processing and maintenance
decision-making. Kothamasu et al. [21] reviewed the philoso-
phies and techniques of system health monitoring and prog-
nostics. They surveyed health monitoring paradigms and
looked into the details of health monitoring tools. In addition,
they introduced previous case studies in system monitoring
and control. Furthermore, Grobal et al. [13] introduced the
initial architecture for CBM framework, which was being
realized in a joint project with SAP research. They mentioned
several aspects of CBM: identification of indicators, measure-
ment of indicators, modeling of indicators, forecasting of
indicators, and decision making. In addition, Dragomir et al.
[10] analyzed and discussed the prognostic process from
different points of view: the concept, the measures and the
tools. They defined a frame to perform (and develop) real
prognostic systems, and also described the concept of ‘prog-
nostic’ in detail and did analysis of the tools used in prognostic

and prediction. The Machinery Information Management Open
Systems Alliance (MIMOSA) proposed and facilitated con-
ventions, guidelines and recommendations that promote cost-
effective unification of machine information, condition assess-
ment and control technology [22]. Recently, Hashemian and
Bean [15] classified CBM techniques into three categories
based on their data source: (1) the existing sensor-based
maintenance technique; (2) the test-sensor-based maintenance
technique; and (3) the test signal-based maintenance technique.
Prajapati et al. [29] have provided a brief overview of CBM
plants. Dieulle et al. [8] proposed a mathematical model for
determining a CBM policy efficiently using renewal processes
theory. In their model, they regarded preventive replacement
threshold and inspection schedule as decision variables. Koç
and Lee [20] addressed the concept of web-enabled predictive
maintenance in an intelligent e-maintenance system which is
implemented via Internet and showed its system elements.
Furthermore, Hirable et al. [16] described the schema and
requirements for the part agent that makes a recommendation
on the part maintenance based on the gathered information
from Internet and historical data. They mentioned that the part
agent could calculate the cost for replacement based on
deterioration of spare parts and their replacement fees.
Deuteranopic et al. [9] proposed the framework of watchdog
agent for predictive condition-based maintenance by realizing
multi-sensor assessment and prediction of machine or process
performance. The concept of watchdog agent based its
degradation assessment on the readings from multiple sensors
that measure critical properties of the process or machinery
under a networked and tether-free environment. The watchdog
agent is an embedded system that has algorithms to autono-
mously assess and predict the performance degradation and
remaining life of machines and components. Yan et al. [37]
presented a prognostic method for machine degradation detec-
tion, which can both assess machine performance and predict
the remaining useful life. In their model, real time performance
is evaluated by inputting features of online data to the logistic
model. And the remaining life is estimated using an ARMA
model based on machine performance history. In addition, Fu
et al. [12] proposed a predictive maintenance framework for
hydroelectric generating unit. They presented three key ele-
ments for the predictive maintenance such as monitoring and
forecasting, diagnosis and prognosis, and decision-making. In
addition, Bansal et al. [2] described a real-time predictive
maintenance system for machine systems. The aim of the
proposed system is to localize and detect abnormal electrical
conditions in order to predict mechanical abnormalities that
indicate, or may lead to the failure of a motor. They used a
neural network approach to predict parameters of a machine.
Recently, Lee et al. [25] introduced the emerging field of e-
maintenance and its critical elements. They also introduced
performance assessment and prediction tools such as neural
networks, fuzzy logic, logistic regression, hidden mark models,
and Bayesian belief networks for continuous assessment and
prediction of a particular products performance. Recently,
Gruber et al. [14] suggested a CBM framework that is based
on system simulations and a targeted Bayesian network model.
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They analyzed the robustness of various CBM policies under
different scenarios throughout simulations, and developed an
explanatory compact meta-model for failure prediction with
Bayesian model.

2.4. Related international standards

There are several international standards related to CBM
approach. Table 1 shows the international standards. Some are
the condition monitoring and diagnostics standards for machin-
ery industry, e.g. ISO 13372, ISO 13373, ISO 13380, and ISO
13381. In particular, ISO TC 108 deals with mechanical
vibration and shock. As a result, ISO 13374 addresses the
MIMOSA OSA-CBM representing formats and methods for
communicating, presenting, and displaying relevant informa-
tion and data. There are also standards related to the issues of
integration and data sharing among manufacturing facilities for
CBM, e.g. ISO 18435 (MIMOSA OSA-EAI). Recently, not
only machinery industry but also plant engineering industry,
e.g. petroleum, petrochemical and natural gas industry, starts to
have more interest in the CBM policy, as you see in the
ISO 14224.

2.5. Techniques for CBM

There are various kinds of techniques to be applied in data
processing, diagnostics, and prognostics for implementing
CBM as shown in Table 2. In CBM, there are three kinds of
approach: (1) Data-driven approach, (2) Model-based
approach, and (3) Hybrid approach [23]. According to
Caesarendra [5], data-driven approach has the ability to trans-
form high-dimensional data into lower dimensional informa-
tion. It is also known as the data mining approach or the
machine learning approach, which uses historical data to
automatically learn a model of system behavior [30]. However
this approach has the dependency on the quality of the
operational data and there is on physical understanding of
target product. On the contrary, model-based approach has the
ability to incorporate physical understanding of the target
product. It relies on the use of an analytical model (set of
algebraic or differential equations) to represent the behavior of

the system, including degradation phenomenon [36]. But, it
has the limitation in the point that it can only be applied to
specific types of products. Table 3 shows several techniques
for each approach.

2.6. Procedure

The CBM can be done by (1) gathering product status data
and monitoring; (2) making a diagnosis of a product status in a
real-time way; (3) estimating the deterioration level of the
product, its repairing cost which depends on the deterioration
level, or its replacement cost, and so on; (4) predicting the time
of products abnormality; and (5) executing appropriate actions
such as repair, replace, left to use as it is, and disposal.
To implement the CBM approach, it is required to resolve

several research issues related to data gathering, analyzing,

Table 1
Survey of international standards.

Standards Subject

IEEE 1451 Smart transducer interface for sensors and actuators
IEEE 1232 Artificial Intelligence Exchange and Service Tie to All Test Environment
ISO 13372 Condition monitoring and diagnostics of machines—Vocabulary
ISO 13373-1 Condition monitoring and diagnostics of machines – Vibration condition monitoring—Part 1. General procedures
ISO 13373-2 Condition monitoring and diagnostics of machines—Vibration condition monitoring – Part 2. Processing, analysis and presentation of vibration data
ISO 13374 MIMOSA OSA-CBM formats and methods for communicating, presenting and displaying relevant information and data
ISO 13380 Condition monitoring and diagnostics of machines—General guidelines on using performance parameters
ISO 13381-1 Condition monitoring and diagnostics of machines—Prognostics, general guidelines
ISO 14224 Petroleum, petrochemical and natural gas industries-collection and exchange of reliability and maintenance data for equipment
ISO 17359 Condition monitoring and diagnostics of machines—General guidelines
ISO 18435 MIMOSA OSA-EAI diagnostic and maintenance applications integration
ISO 55000 Asset management

Table 2
Survey of condition-based maintenance techniques.

Phase Techniques

Data processing – Kalman filtering
– Time–frequency/time–frequency moments
– Wavelet analysis
– Autoregressive (AR) model
– Fourier analysis
– Wigner–Ville analysis

Diagnostics

– Fuzzy logic
– Artificial Neural network
– Genetic algorithms
– Statistical pattern recognition
– Hidden Markov model
– Support Vector Machine
– Decision tree induction
– Logistic regression

Prognostics

– Artificial Neural network
– Reliability theory
– Statistical analysis (e.g. Regression)
– Time series data analysis
– Case Based Reasoning (CBR)

Maintenance operation

– Renewal theory
– Math programming
– Simulation
– Multi-Criteria Decision Making (MCDM)
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decision, and actions. In the data gathering level, large amount
of field data were collected by various data acquisition
methods using sensors, wired and wireless techniques, and
stored in a database [29]. Before data gathering, it is necessary
to identify which data should be gathered during asset usage
period for CBM. For the analyzing, it is required to develop an
algorithm that assesses the behavior and degrading level of an
asset, and predicts its remaining life time.

Analyzing has two parts in CBM: diagnostics and prog-
nostics. Diagnostics consists of fault detection, fault isolation
determining the location of the fault, and fault identification
determining the fault mode [28,14]. To this end, diagnostics
requires data pre/post-processing, data interpretation, data
fusion, and several statistics methods with asset specific
knowledge. On the other hand, prognostics corresponds to
the estimation of the time to failure and the risk for one or
more existing and future failure modes based on anticipated
future usage [28,36]. To this end, prognostics deals with
estimation of system health index and predictions of Remain-
ing Useful Life (RUL) [6]. Prognostics is a word newly coined
by the scientific community to address the combination of
diagnosis and prognosis [1]. For more detailed understandings
of prognostic, please refer to Dragomir et al. 's work [10].
Prognostics is employed by integrating sensor data and
prediction models that enable in situ assessment of the extent
of deviation or degradation of a product from an expected
normal operating condition [34]. It is critically important to
assess the RUL of an asset while in use since it has impacts on
the planning of maintenance activities, spare parts provision,
operational performance, and the profitability of the owner of
an asset [33].

In the decision making level, first, there are some decision
issues to be made [35]: selecting the parameters to be monitored;
determining the inspection frequency; and establishing the
warning limits. Furthermore, it is also necessary to develop a
decision method that selects the best cost-effective maintenance
operation telling us which maintenance option is the best under a

given situation in terms of maintenance costs. Depending on
cases, there are several maintenance options related to what,
when, and how to do maintenance. For each option, it is required
to build up maintenance cost models. Comparing cost models
will allow us to select the best cost effective maintenance
schedule. In the action level, it is requisite to design action
plans for all possible scenarios. Finally, it is necessary to develop
a framework for integrating these four issues.
Regarding the procedure of CBM, first of all, we should look

into the MIMOSA Open Standard Architecture Condition Based
Maintenance (OSA-CBM) architecture. OSA-CBM is designed
by MIMOSA which is an organization involved in the develop-
ment of the standards for CBM. OSA-CBM is a standard for
information flow to help realize an end-to-end CBM system [29].
According to MIMOSA Open Standard Architecture Condition
Based Maintenance (OSA-CBM), there are six layers needed
to implement the concept of CBM: Data Acquisition, Data
Manipulation, State Detection, Health Assessment, Prognostics
Assessment, and Advisory Generation.
Fig. 1 shows the generic procedure for implementing CBM

approach based on the OSA-CBM architecture.

2.7. Introduction of related case studies

In this section, we briefly introduce several case studies
related to CBM approach that we have carried out. Table 4
shows the summary of our case studies.

2.7.1. Oil analysis: Truck engine
The first case study [18] has dealt with a CBM method of

estimating the change time of engine oil of a vehicle (truck). Oil
debris analysis is one popular technique in the CBM domain.
According to Prajapati et al. [29], some automobile companies like
GM has deployed a CBM system to detect the oil quality based on
the life of oil components. In this case study, we have developed a
predictive algorithm to determine a suitable changing time of
engine oil by analyzing its degradation status with mission profile

Table 3
Survey of condition-based maintenance techniques.

Classification Techniques

Model driven approach – Physics based
– Classical AI techniques (rule-based expert systems, finite-state machines, qualitative reasoning) [28]

Data driven approach

– Conventional numerical algorithms (linear regression, Kalman filters) [28]
– Statistical approach (multivariate statistical method, state space models, regressive model) [27]
– Machine learning (neural networks, decision trees, support vector machines) [28]
– ANN based, Bayesian network, Hidden Markov Model, Principal component analysis, Gray model [27]

Knowledge-based approach

– Expert systems [27]
– Fuzzy logic [27]

Fig. 1. Procedure for CBM approach.
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data. In most cases, engine oil changes are typically performed
according to mileage or calendar schedules, i.e. time-based
preventive maintenance. However, this strategy is not efficient
because the oil change interval usually depends on the usage mode
of a vehicle which can be identified by its mission profile data
during its usage period. Depending on the type of a vehicle and its
usage objective, the usage mode (hereafter called mission profile
type) will be different. Some vehicles may be frequently used in a
highway, while some could also be mainly used in an urban.
Diverse mission profile types make the degradation process of
engine oil different. Thus we should apply different time intervals
to change engine oil considering the specific mission profile type of
a vehicle. It is the main idea of this case study.

In this case study, our goal is to determine the appropriate
time for changing engine oil based on the analysis of mission
profile data. If we are truck drivers, at a specific time T, we
want to know whether we should change engine oil or not.
How do we determine the appropriate time of engine oil
change without direct analysis of engine oil, just only by using
the mission profile data gathered at T? This was the problem
that we wanted to solve in this case study.

To resolve this problem, we have proposed a predictive
algorithm based on gathered vehicle operation data via on-board
diary equipment in a vehicle. Since there was no direct sensing
mechanism for identifying engine oil quality, we used indirect
sensing measures (e.g. RPM, the number of engine starts, etc.)
gathered by on-board diary equipment built in a truck. We
identified the relationship between indirect measures and direct
measures for engine oil quality (e.g. TAN, TBN, Viscosity), and
used it for the algorithm for estimating the suitable engine oil
change interval. In the proposed algorithm, we used several
statistical methods such as discriminant and classification
analysis, factor analysis, and multiple regression analysis. First,
based on historical data, it is necessary to identify main factors
of mission profile indicators and oil quality indicators. Then,
analysis of mission profile data gathered for prediction is done
to get the information of mission profile type of a truck. After
identifying mission profile type of the truck, we can identify the
relations between main factors of mission profile indicators and
oil profile indicators for each mission profile type. Based on
them, we could predict the quality of engine oil and decide
whether the change of engine oil is needed or not.

2.7.2. Crack propagation analysis: lift arm structure of TTL
The second case study [32] is about developing the

CBM method for the lift arm structure of a heavy loaded
vehicle, called Track Type Loader (TTL). The developed

CBM algorithm focuses on the RUL estimation of the lift
arm structure. It could be estimated based on the degradation
state data, mission profile data, and future usage mode data.
The degradation state data is assessed by the crack

propagation data measured by sensors. To assess the degrada-
tion state of the lift arm, it is necessary to use several sensors
attached to different locations of structure welds. Each sensor
observation provides the measurement value related to the
degradation state of each location. The sensor provides the
information at each ligament breaking during the time of use of
the structure part. One ligament breaking corresponds to
8.33% of sensor damaging. The sensing data could be
transmitted to a central server via RFID and wireless commu-
nication technology. To estimate the RUL in a more exact
way, it is necessary to understand the concept of mission
profile. The mission profile data consist of operation data and
working environment data. The operation data indicates usage
behavior data generated from product consumers or operators
under a specific usage mode and collected by various sensors
attached to the TTL during its operation: e.g., engine Revolu-
tion Per Minute (RPM), mileage, operation hours, the number
of engine starts, and several loading conditions such as
hydraulic cylinders pressure measurement, pin load sensors
measurements, and hydraulic cylinders displacements mea-
surements. The working environment data are related with
working places where the product is usually used. As working
environment data, geographical data in the product working
site such as humidity, temperature, and soil type could be
collected. The future usage mode data are the predefined
working conditions for future use, e.g. economic mode or sport
drive mode in a car. For the TTL case, as the future usage
mode, the following can be considered: waste transfer,
forestry, road construction, quarry, ship hold, demolition
(building), house construction, and so on. To select the future
use mode of the structure part means to decide at the present
instant what future mission will be realized.
Without the detailed identification and segmentation of the

mission profile, and the selection of future usage mode, it is
difficult to estimate the RUL in an exact way. Some TTLs are
used in the harsh environment or under strict usage operations
while others are used in the mild environment or under loose
usage operations. Thus, depending on environmental and
operational conditions, the degradation will be different, which
indicates that the RUL estimation should be done considering
mission profile data and future usage mode data. Based on the
selected usage mode, a typical segmentation of mission profile
data is established and each one is stored in the mission profile

Table 4
Classification of case studies.

Target product Concerning variable Application area Objective

–Engine –Engine oil quality –Commercial vehicle –RUL estimation
–Lift arm –Crack –Heavy load vehicle –RUL estimation
–Locomotive –Fault event data –Locomotive –RUL estimation and fault analysis
–Compressor –Vibration –Offshore plant equipment –RUL estimation
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database for reuse. When the future usage mode is identified,
the corresponding mission profile data can be retrieved from
the mission profile database and used for the RUL estimation.
For example, loading condition data is used for a Finite
Element Analysis (FEA). Using these loading conditions and
a CAD model of the lift arm, the FEA allows to retrieve the
future local stress history at each location of the structure, and
in particular at the sensor measurement point. When the future
local stress profile is found, the remaining number of applied
stress cycles can be calculated by the fracture mechanics
theory based on current degradation state data by sensors and
so the local remaining life time can be estimated by the crack
propagation method based on fracture mechanics.

2.7.3. Field operation data analysis: locomotive
To implement the CBM, one important task is to correlate

monitored product usage data with the product status. In
reality, many industries gather a big amount of product usage
data, but do not analyze or use them in a systematic way. In
this respect, the third case study [31] focuses on how to
analyze the lots of product usage data from the CBM approach
viewpoint.

The case study has been done based on the operation data of
a locomotive during one year. The locomotive has lots of
sensors to monitor and, gather and store the usage data of
components/parts into the PEID, e.g. on-board computer,
during its operation. The gathered data in PEID are periodi-
cally transmitted to a central server for analysis. However, the
locomotive operation company does not have any kind of
effective method to use gathered product usage data in a
systematic way. Although more exact failure analysis could be
possible with currently obtainable usage data such as tempera-
ture, current, voltage, pressure, etc., the data monitored by
sensors are just transferred to the main database located in the
company and stored. Hence, it is necessary to upgrade the
current maintenance policy for the efficient operation of the
locomotive, e.g. CBM approach.

The prediction of product status based on the analysis on
product usage data is one of the most challenging tasks to
realize the CBM approach. To this end, various kinds of
methods, such as logistic regression analysis, Artificial Neural
Network (ANN), AutoRegressive Integrated Moving Average
(ARIMA) model, and reliability analysis, and so on, have been
studied and implemented.

In this case study, the ANN is applied to correlate monitored
product usage data with the product status. The case study
based on the locomotive operation data has been carried out to
predict the next failure event by correlating the accumulated
failure data of locomotive components/parts with the locomo-
tive status with several ANN methods. To find the most
suitable type of ANN model for the CBM, several types of
ANN models are tested with field data collected during
locomotive operations. Whenever a failure event occurs during
operation, the ANN is trained using stored data in the database
for each failure event type. The trained ANN is used to
estimate the next failure event occurrence time and failure

event occurrence rate with the currently monitored operational
and environmental data.

2.7.4. Vibration analysis: Compressor
In this case study [7], we have introduced an algorithm

predicting the next failure time of the compressor which is one
of essential mechanical equipment in Liquefied Natural Gas
Floating Production Storage (LNG FPSO and Offloading
vessel).
Nowadays due to the fact that an accident of LNG FPSO in

operation causes catastrophic damage, many studies dealt with
the improvement of operating a maintenance system for high-
valued assets such as LNG FPSO. The LNG FPSO is
composed of lots of facilities and equipment. Among them,
this case study focuses on a gas compressor equipment which
is an important device in not only offshore but also onshore
plants. A gas compressor is a mechanical device that increases
the pressure of a gas by reducing its volume. Among several
types of compressors, we choose the centrifugal compressor.
In order to monitor the status of the gas compressor and

estimate the next failure time based on the gathered status data,
among several status parameters of the compressor, we have
focused on vibration parameter data since it is widely used in
detecting the status of rotating equipment such as compressor.
Relative shaft vibration and bearing vibration sensing data are
usually used to evaluate the status of a compressor of the LNG
FPSO. This case study has evaluated the status of a gas
compressor through relative shaft vibration data.
According to ISO 7919 standard for relative shaft vibration

of rotating machines, four levels of vibration limits are
recommended: limit of start-up performance, limit of good
vibration performance, limit for warning alarm, and limit for
trip. As an evaluation criterion, this case study used the
magnitude of vibration, i.e. Peak–Peak value. To do the
CBM approach of a LNG FPSO compressor, this study has
proposed a prognosis algorithm based on continuous time
Markov model theory. In the proposed algorithm, first, after
collecting relative shaft vibration history classified by status
transition between the levels of vibration limits, status transi-
tion rates could be estimated. And then, the next failure time
could be estimated based on the developed formula. To show
the usefulness of the proposed algorithm, an example based on
generated shaft vibration sensor data was described in the case
study. For more details, please refer to Cho et al. [7].

3. Discussion

There are some discussion points in implementing CBM
approach. First, the CBM is not always effective in all cases.
Depending on product type and its lifecycle, economic benefits
will be different since the degree of importance of maintenance
operation will be different, which requires detailed analysis on
maintenance strategy. There are various product types such as
large-scaled plant, industry or consumer products with high value
or low value. For the large scale plant or high valued product, the
CBM could be a good solution because the product failure causes
great loss. However, for mass-consumption products such as
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automotive, the CBMmay not be effective in terms of maintenance
cost. Thus, we should consider economic benefits when we apply a
new maintenance strategy. To this end, it is imperative to define
the business model for new maintenance operation and identify
benefits and costs.

Furthermore, another challenging issue is how to implement
CBM in the case of very few or no data situations. This is typical
for newly commissioned systems where no observed failure data
and maintenance information exists [33]. In this case, as Si et al.
[33] mentioned, the quantity and completeness of data are
insufficient to fit the full statistical models. Hence, it may be a
better choice to develop physics-based models with the help of
subjective expert knowledge from design and manufacturing. If
machine learning techniques are used for diagnosis or prognosis, in
the beginning of CBM implementation, the unsupervised learning
approach may be better to build up the reference model identifying
normal and abnormal situations. And then, supervised learning and
reinforcement learning approach could be applied to make the
CBM algorithms more accurate.

Another discussion point is that, as Mobley [26] mentioned,
most CBM approaches treat target product as isolated unit
system and not as part of an integrated system. As a result, no
effort is made to determine the influence of system variables
(process parameters, e.g. flow rate, temperature, load, speed,
etc.) on the individual component. CBM is not just a box you
can buy to integrate onto your platform or system, but is a set
of integrated technologies, processes, and capabilities that
together enable CBM to be realized [29]. CBM methods and
practices have been continuously improved for the last
decades: however, CBM is conducted at equipment level-one
piece of equipment at a time, and the developed prognostics
approaches are application or equipment specific [19]. How-
ever, to get the practical benefit of CBM approach, it is
necessary to consider applying CBM into not only one piece of
equipment but also an integrated system level.

In addition, one challenging issue is to make the closed link
between product design improvement and CBM. Collecting
product status data during product usage period makes a
product itself or product operations improved in a various
way. For example, we can consider the improvement of design
as well as the optimization of maintenance operations. Despite
much interests on the CBM methods over diverse domains,
there has been a lack of methods to combine product usage
information with design improvement in a systematic way.
Although there have been some related research works, there is
still the limitation in the decision framework or guidance for
product design improvement based on product status informa-
tion assessed by gathered product usage data during product
operation. For example, the RUL value at a certain time can be
compared to the theoretical remaining life time of a product
calculated by the difference between the designed life time and
product operating time. A comparison of these values tells us
how adequately the product is being used. As a result, if the
remaining life time is longer than the theoretical remaining life
time, then, we can let the product go without any maintenance
actions or modify the severity of mission profile for the use
of more intensive applications. Otherwise, CBM operations

should be done. Thus, it is needed to develop a decision
support method applying product status data analyzed during
CBM into supporting design improvement. Finally, it is
valuable to discuss what the issues are in order to implement
CBM in a real time way. In order to realize the CBM, there are
some ICT challenges to be solved in a real field: sensor data
quality related to gathering frequency, noise, and level of
details of sensor data, data availability, wireless communica-
tion problem, frequency of diagnostics and prognostics, and so
on. From the data gathering viewpoint, we should consider the
scale of gathered data. In CBM, sensor measurements could be
taken at regular interval or even continuously in a real time
way. If we can monitor a product and gather the product status
data in a real time way, it must be the best way for analyzing
the product status. However, with this approach there is the
heavy load of data gathering which leads to high cost. From
the practical viewpoint, it is not cost-effective to gather the
data of product status in a real time and continuous way.
Actually, data gathering is done based on a certain time period,
e.g. every five minutes, every one hour, and so on. Hence, it is
necessary to decide the most suitable time period for data
gathering considering the scale of gathered data. On the other
hand, we should consider data transmission mechanism. In
general, product status data can be gathered via various sensors
and on-board computer already attached to a product via wire
or wireless communication. For the data transmission between
various sensors and a host computer, we can use RFID tags as
transmitters or directly send gathered sensor data into the host
computer via wire or wireless communication. Since there are
various ways of data transmission, it is necessary to identify
which data transmission type (wire or wireless) is effective in
terms of cost and reliability.

4. Conclusion

There is no doubt that the CBM approach will be one
important tool to industries in the era of big data. Although
the concept of CBM is introduced a few decades before, recently
the CBM approach has been highlighted from industries
according to the development of emerging ICTs. To implement
the CBM approach, first and foremost, it is required to look into
what the CBM is. For this purpose, this study has reviewed the
CBM approach from several viewpoints. The definition, advan-
tages and drawbacks, related international standards of CBM
were introduced. Furthermore, data, procedure, techniques for
implementing the CBM approach have been addressed. In
addition, various CBM case studies have been briefly introduced.
Finally, some challenging issues and discussion points to realize
the CBM approach have been dealt with.
Although this study tried to deal with several aspects of CBM,

there are still some limitations, which could be considered future
research works. First, there is the limitation in providing the more
details on the technological traits on CBM. Second, since it does
not contain all of relevant previous works, there may be some
limitations in providing more concrete analysis on CBM approach.
Despite the above limitations, we believe that it will help people
understand the concept of CBM approach in more detail.
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