
H O S T E D B Y Available online at www.sciencedirect.com

Journal of Computational Design and Engineering 2 (2015) 55–66

Visualizing sphere-contacting areas on automobile parts for ECE inspection

Masatomo Inui, Nobuyuki Umezun, Yuuki Kitamura

Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

Received 27 September 2014; received in revised form 21 October 2014; accepted 23 October 2014
Available online 6 December 2014

Abstract

To satisfy safety regulations of Economic Commission for Europe (ECE), the surface regions of automobile parts must have a sufficient degree
of roundness if there is any chance that they could contact a sphere of 50.0 mm radius (exterior parts) or 82.5 mm radius (interior parts). In this
paper, a new offset-based method is developed to automatically detect the possible sphere-contacting shape of such parts. A polyhedral model
that precisely approximates the part shape is given as input, and the offset shape of the model is obtained as the Boolean union of the expanded
shapes of all surface triangles. We adopt a triple-dexel representation of the 3D model to enable stable and precise Boolean union computations.
To accelerate the dexel operations in these Boolean computations, a new parallel processing method with a pseudo-list structure and axis-aligned
bounding box is developed. The possible sphere-contacting shape of the part surface is then extracted from the offset shape as a set of points or a
set of polygons.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords: ECE safety inspection; Automobile part design; Collision detection; Offsetting; GPU

1. Introduction

Safety is an important concern in the design of automobile
parts. The Economic Commission for Europe (ECE) defines
several safety regulations on part shapes so that they do not hurt
pedestrians, drivers, or passengers in the event of a car crash [1].
For instance, ECE-17 defines the shape conditions for structural
parts of automobile seats, while ECE-21 and ECE-25 specify
conditions on the roundness of corners in the car's interior and
headrest, respectively. ECE-26 is related to ECE-21, and controls
the surface roundness of exterior parts. Similar regulations are
defined in other countries such as Japan, USA, and China [2].

Fig. 1 illustrates the concept of ECE-21 and ECE-25. The
corners of interior parts and headrests that can be contacted by
an imaginary sphere of radius 82.5 mm must have a roundness
greater than R3.2. This radius is equivalent to the average head
size of an infant. ECE-17 places a similar shape constraint on
seats. As a result, seat designers often put thick wires under the

seat (see Fig. 2) so that the head cannot come into direct
contact with sharp corners. ECE-26 states that any exterior
surface parts with which a sphere of radius 50.0 mm could
contact must have a roundness greater than R2.5.
As exterior and interior parts strongly affect the appearance and

comfort of an automobile, they are often initially designed in
terms of their function and esthetics. Currently, ECE regulations
on part shapes are only inspected by specialists at the final design
stage. The most important task in the inspection is to detect those
surface regions that can be contacted by a sphere of 50.0 mm
radius (for exterior parts) or 82.5 mm radius (for interior parts).
To manually check the contact conditions of each part, many 2D
section drawings are produced. This work is tedious, time
consuming, and prone to human errors. Thus, a fast, automatic
inspection method that allows the designers themselves to check
the regulations is highly desirable.
Various commercial systems enable the visualization of a

sphere-contacting part shape (e.g., CAVA [3]). However, the
visualization quality of such systems is not sufficient for a
precise understanding of how the sphere contacts the part.
According to our research, some Japanese companies have
developed in-house systems for automating the inspection task.

www.elsevier.com/locate/jcde

http://dx.doi.org/10.1016/j.jcde.2014.11.006
2288-4300/& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

nCorresponding author. Tel.: þ81 294 38 5262; fax: þ81 294 38 5229.
E-mail address: umezu@mx.ibaraki.ac.jp (N. Umezu).
Peer review under responsibility of Society of CAD/CAM Engineers.

www.sciencedirect.com/science/journal/22884300
http://dx.doi.org/10.1016/j.jcde.2014.11.006
www.elsevier.com/locate/jcde
http://dx.doi.org/10.1016/j.jcde.2014.11.006
http://dx.doi.org/10.1016/j.jcde.2014.11.006
http://dx.doi.org/10.1016/j.jcde.2014.11.006
mailto:umezu@mx.ibaraki.ac.jp

For example, in a virtual milling method, a fixed-axis milling
simulation is executed on the car part, using a ball-end cutter
of specific radius to distinguish the sphere-contacting shape.
The contacting sphere is assumed to approach the part along
the direction of the cutter axis (the z-axis in the case of a three-
axis milling). To improve the inspection quality, milling
simulations must be conducted along multiple axes, which
leads to considerable computation time.

To assist part designers, this paper proposes a new method
for automatically detecting the sphere-contacting shape of car
parts. The input data consists of a polyhedral model that
precisely approximates the part shape. Consider the surface of
the part offset by the radius of the sphere. The sphere can
contact the part surface when its center point is located on the
offset surface. In Fig. 3, S represents the part surface and S0

represents its offset. The proposed method computes the offset
shape of the part as the Boolean union of expanded shapes of
all surface triangles of the model. A 3D model in triple-dexel
representation [4–7] is adopted for stable and precise Boolean
union computation, and a new parallel processing method with
a pseudo-list structure and Axis-Aligned Bounding Box
(AABB) is developed to accelerate the dexel operations in
the Boolean computation.

Those points on the part that possibly contact the sphere are
extracted and visualized using two methods. The first samples
many points on the offset surface (for example, point p0 in
Fig. 3) and computes their normal vectors. Sphere-contacting
points on the part are obtained by projecting the sampled
points back toward the part surface along the direction of the
normal to the offset surface. Point p in Fig. 3 corresponds to
the contact point of a sphere with center point p0. The contact
region can then be visualized by coloring these contact points.

The second method internally offsets (shrinks) S0 back toward
the initial surface to derive a surface S″. This is the surface
formed by sliding a sphere over the part surface. The
intersection between the part surface S and the shrunk surface
S″ corresponds to the sphere-contacting shape of the part. Our
method derives the intersection surface as a set of small
polygons.
This paper is organized as follows. In the next section, some

related studies on the ECE regulations and offset computations
are briefly reviewed. The novel contributions of our sphere-
contacting shape detection algorithm are explained in Section
3. Sections 4 and 5 contain details of the dexel-based parallel
offsetting algorithm, including the pseudo-list structure of the
dexel data updating mechanism and the AABB thread manage-
ment method. In Section 6, we describe visualization methods
for the sphere-contacting shape based on the offset surface.
Experimental extractions and visualization results with some
complex CAD models of automobile parts are discussed in
Section 7, and we summarize our conclusions in Section 8.

2. Related studies

2.1. ECE inspection

Although ECE inspections are an important topic for auto-
mobile manufacturers, technologies for automating the inspection
task have rarely been studied. Many manufacturers still use
manual inspection methods. The Toyota Motor Corporation
submitted some patents concerning the automatic inspection of
ECE-17, -21, and -25 in 2005 [8]. Toyota's method uses the offset
surface of a CAD model to extract the possible sphere-contacting
surface. The offset computations for complex 3D shapes are
generally difficult and unstable, and Toyota's patent did not
describe the technical details of their computation method. Some
automobile companies use the CAVA software [3], the technical
details of which are unpublished.
Yamazaki et al. proposed an ECE regulation inspection

system based on detecting the intersection between a CAD
model and spheres of 82.5 mm radius placed on the model
surface [9]. A parallel intersection detection algorithm com-
bined with hierarchical geometric data management was
introduced to accelerate the computation. However, this
method cannot be applied to parts with sharp edges and

Fig. 1. Geometric description of safety regulations ECE-21 and ECE-25.

Fig. 2. Geometric description of safety regulation ECE-17.

Fig. 3. Relationship between points on the offset surface and sphere-contacting
points.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6656

corners, because no appropriate method for placing spheres on
such surfaces was given. The current authors proposed an
improved virtual milling method for the rapid detection of the
sphere-contacting shape [10], with an inverted offsetting
method accelerated with the depth buffer mechanism of a
Graphics Processing Unit (GPU) used for the milling simula-
tion [11]. Because this system is based on three-axis milling
simulation technology, it does not overcome virtual milling's
key limitation of dependence on the direction of approach of
the sphere.

2.2. Offset computation

Our ECE inspection method uses the offset surface of the
part model. Offsetting is one of the most fundamental
operations in geometric modeling. The mathematical issues
of offsetting were comprehensively studied in earlier work by
Rossignac and Requicha [12]. The offsetting operation for
curves and surfaces is well known [13–15]. However, the
complexity of offsetting increases significantly when we
consider a 3D model, because the offsetting must handle both
the individual surfaces in the model as well as topological
reconstruction by trimming and reconnecting the offset sur-
faces into a closed model. Earlier techniques for offsetting 3D
models [12,16,17] are often computationally expensive, and
model reconstruction can be unstable.

To overcome these difficulties, new offset computation
methods based on the discrete representation of the 3D model
have become popular. Known representation schemes utilize
points, voxels, dexels [18], rays [19], and Layered Depth
Images (LDI) [20], and various improvements, e.g., triple-
dexels [4–7] have been reported. As discrete 3D models do not
have surface elements, the topological reconstruction step,
which is the most critical process in conventional offsetting, is
not necessary. After offsetting, a polyhedral model of the offset
shape is derived by applying some surface extraction technol-
ogy, such as marching cubes [21] or dual contouring [22], to
the discrete model.

Chen et al. proposed a point-based offsetting method [23,24]
in which points are densely sampled on the surface of the input
polyhedral model. Candidate points on the offset surface are
generated by simply shifting the points on the polygon or
replacing points on the vertices and edges with points on
spheres and cylinders. After removing points located inside the
offset model, a polygonal offset mesh is generated by
connecting the remaining points. Liu and Wang proposed
another point-set-based offsetting method [25]. Their method
assumes that each sample point on the object surface has a
unique normal vector. It is difficult to satisfy this condition in
automobile parts with sharp edges and vertices, because points
on such elements have multiple normal vectors.

Offsetting a 3D object can be recognized as a Minkowski
sum between the object and a sphere of the offset radius. Lien
proposed a point-based Minkowski sum operation [26]
whereby the surfaces of two objects are converted to two
groups of points and then summed. Points located inside the
Minkowski sum object are discarded by applying a series of

“filters” to determine the offset surface. The most expensive
process in point-based offsetting is this filtering step, and the
cost can become huge for cases, such as in a typical ECE
inspection, with a large offsetting radius.
Consider a 3D object in a box-like space. The distance field

is the spatial grid structure in which the distance from the point
to the closest surface of the object is recorded at each grid
point. Many researchers have proposed distance field-based
offsetting methods [27–30]. For some offset radius r, the offset
surface of the model goes across an edge connecting a grid
point with a distance greater than r with another point whose
distance is less than r. After detecting such edges, a marching
cubes method (or similar) can determine the polygonal offset
surface. A similar idea was used in [31], where several filtering
methods were developed to reduce the computation cost of the
distance field.
Li and McMains discussed a voxelized Minkowski sum

computation with culling techniques [32,33]. Their method
first generates possible surface elements of the Minkowski sum
shape of two objects. Voxels corresponding to the Minkowski
sum shape are then selected according to the surface elements.
Unfortunately, the use of such spatial grid-based offsetting
methods for ECE inspections would consume large amounts of
memory to record the distance field or voxel model.
The offsetting method proposed by Wang and Manocha uses

LDI to record the object shape and temporal result of the offset
computation [34,35]. Zhao et al. developed a Compact LDI
(CLDI) approach, which offers improved data storage technology
to reduce the amount of memory required [36]. These works also
use the parallel processing capability of GPUs to accelerate the
computation. Because the triple-dexel representation is geometri-
cally equivalent to LDI and CLDI, the offsetting methods proposed
in [34–36] have similarities to our work. The main differences are
explained in the next section.

3. Contributions of the proposed method

Our collision detection method requires the input of a precisely
tessellated CAD model of automobile parts. Most commercial
CAD systems provide a function to output the model data as a
group of triangular polygons, for example in the STL format. The
offset shape of the model is obtained as the Boolean union of
expanded shapes of all surface triangles of the model. In contrast
to point-based offsetting, this technique does not require any
filtering operations. The Boolean operation uses the triple-dexel
representation of the 3D model. This representation requires less
memory than spatial grid-based methods to produce an offset
shape of the same accuracy.
Our offsetting method has similarities to the shape repre-

sentation techniques proposed by Wang and Manocha [34,35]
and by Zhao [36], and also uses the parallel processing
capability of a GPU to accelerate the computation. In contrast
to these prior studies, the method proposed in this paper has
the following novel features:

� Our method computes the offset shape as a union of the
expanded shape of all triangles of the part. Because the

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–66 57

edges and vertices of the triangles contribute the resultant
offset surface, this is a robust method of detecting colli-
sions. The algorithms given in [34,35] compute the offset
shape using spheres placed at points distributed on the part
surface. This approach is liable to overlook collisions
around sharp edges and vertices, the most critical condition
in the ECE inspection.

� We introduce a new pseudo-list method to support the
parallel construction of the dexel model. This enables more
efficient processing than in previous approaches [34,36],
which used a data storage mechanism with several redun-
dant operations. Our pseudo-list technique also enables the
dexel model to be partially updated in the model construc-
tion process, a problematic operation in the previous
approaches.

� In addition to conventional point-based visualization tech-
niques [9,10], the proposed method computes the sphere-
contacting shape as a set of small polygons. This is not only
desirable for visualization purposes, but also for transferring
the collision detection result to other CAD systems in the
standard polygon data format.

4. Preprocessing operations

To prepare data that is suitable for the proposed method, the
surface polygons of the input model are classified into small
groups according to their proximity. This classification pro-
ceeds according to the hierarchical structure of the AABB [37].
Consider n triangular polygons forming the model surface. An
AABB that tightly contains the polygons within is defined by
measuring the coordinate ranges of the polygons in the x-, y-,
and z-directions. Define one root AABB holding all triangular
polygons of the given model. We project the center points of
all polygons in the AABB to a line parallel to its longest axis,
and sort the polygons according to the order of the projected
points on the line. Two AABBs are then formed by the first n/2
sorted polygons and the remaining n/2 polygons, respectively.
These are considered to be two children of the original AABB.
The sorting and grouping operations of polygons and the

process of defining child AABBs are iterated, and a binary
AABB tree is obtained. The tree construction process is
terminated when all leaf AABBs of the tree contain only
nmax or fewer polygons, where nmax is the maximum number
of polygons allowed for each leaf AABB. In our implementa-
tion, we set nmax¼8 based on numerical experiments. Each
leaf AABB retains the number of polygons within and the
geometric data (coordinates of vertices) of the polygons.
The triple-dexel representation of the 3D model is used in

the offset computation and to represent the offset shape. In the
original dexel modeling [18], object shapes were represented
by a series of z-axis-aligned vertical segments defined for each
grid point of a square mesh in the x–y plane (see Fig. 4(a)). In
the dexel model, near-horizontal surfaces are precisely repre-
sented by the end points of dexel segments, whereas vertical or
near-vertical surfaces have inevitable shape errors caused by
the finite grid resolution in the x–y plane. The triple-dexel
model was proposed to overcome this non-uniformity of
representation accuracy. In the triple-dexel representation, the
object shape is not only defined by a z-axis-aligned dexel
model, but also an x-axis-aligned dexel model based on a grid
in the y–z plane and a y-axis-aligned dexel model based on a
grid in the z–x plane (see Fig. 4(b)). In this representation, the
geometric information of vertical or near-vertical surfaces is
accurately represented by the end points of horizontal x- or y-
axis-aligned dexels [4–7].

5. Parallel offset computation

To implement parallel offsetting software, we use the
Compute Unified Device Architecture (CUDA) [38]. Current
GPUs are designed to have thousands of small streaming
processors (SP) on a chip. By using CUDA, programmers can
utilize a GPU as a general purpose parallel processor in which
each SP executes a computation unit (or thread). The accel-
eration gained by using a GPU is mainly due to the replace-
ment of iterative executions of a function by the parallel
execution of its equivalent threads. Under CUDA, program-
mers can specify the execution of up to 65535 � 65535 �
512 simultaneous threads. To properly manage such a tremen-
dous number of threads, CUDA provides grid and block

Fig. 4. Definition of dexel model and triple-dexel model.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6658

structures. Each block is a 1D, 2D, or 3D array of threads, and
each grid is a 1D or 2D array of blocks.

Within a PC, the CPU and GPU are independent units with
their own memory systems. Data for GPU processing are
usually prepared in the main CPU memory before being
transferred to the graphics memory. In our parallel offset
computation, the basic data are the vertex coordinates of the
triangular polygons within each leaf AABB. Before executing
the threads for the offset computation, these are transferred to
the GPU. After the threads have completed their execution, the
triple-dexel model representing the offset shape of the part is
recorded in the graphics memory. The model data is then
transferred from the graphics memory to the main CPU
memory and used in the visualization process.

5.1. Parallel offsetting of polygons within single AABB

In the following sections, we explain the offset computation
with z-axis-aligned dexels. In the actual processing, the same
operations are repeated for the x- and y-axis-aligned dexels.
Before the processing commences, a null z-axis-aligned dexel
model (the Offset Dexel Model, ODM) is prepared on a regular
square grid in the x–y plane. The grid is defined so that it holds
the projection of the offset model to the x–y plane within. The
resolution of the grid is determined according to the accuracy
requirement of the offset computation and the available
memory size. The ODM is updated in the following computa-
tion, and finally forms the offset shape model of the part in the
dexel representation.

Each leaf AABB of the AABB tree is the basic processing
unit of the offset computation. A single leaf AABB holds at
most nmax polygons in its neighborhood. These are expanded
by radius r (where r is 50.0 mm for exterior parts and 82.5 mm
for interior parts). The expanded shape of the polygons is
equivalent to a Boolean union shape of spheres, cylinders, and
thick plates (slabs) placed on the polygons as follows:

� Spheres of radius r are placed on all vertices of the
polygons.

� Cylinders of radius r are placed along each edge e of the
polygons, with the center axis of the cylinders coinciding
with e.

� Slabs with the area of each face and thickness 2r are placed
on each polygonal face f, with the center plane of the slabs
coinciding with f.

According to the expansion of the polygons, the AABB
holding the polygons is also enlarged by r to properly enclose
the expanded polygons within. This operation is achieved by
simply shifting the six rectangles of the AABB in their
outward directions, as shown in Fig. 5.

The projection of the enlarged AABB to the x–y plane limits
the range of vertical dexels that can possibly intersect the
expanded triangles in the AABB (see Fig. 6). For each grid
point within the projection, we compute the intersection of a
vertical line starting from that point with the expanded

polygons, and generate a temporal dexel model of the
expanded polygons (see Fig. 7(a)). The dexel-wise Boolean
union of the temporal dexel model and the ODM is then
computed, and the result gives the new ODM (Fig. 7(b)). In
this process, the Boolean union of a series of dexels in the
expanded triangles and another series of dexels in the ODM on
the same grid point is calculated for all grid points within the
projection.
This Boolean union computation of dexels on a grid point is

independent of those on other grid points. Thus, the dexel-wise
Boolean union computation can be parallelized. A single CUDA
thread is assigned to each grid point. This thread computes a
series of dexels for the temporal dexel model of the expanded
triangles on the grid point. It then executes the above dexel-wise
Boolean union computation. By invoking threads for all grid
points within the projection of the expanded AABB, we obtain
part of the offset dexel model for the triangles in the leaf AABB.
This operation is executed for all leaf AABBs, and the offset
computation of the part model is complete.
In the current implementation, the following values are

stored in each dexel of the ODM:
top_v, bottom_v: z-coordinate values of the top and bottom

end points of a dexel. For the x- or y-axis-aligned dexels, the x-
or y-values of the end points are stored instead.
top_ID, bottom_ID: Identification numbers of component

elements (spheres, cylinders, or slabs) of the expanded
triangles forming the top and bottom end points of the dexel.
This information is obtained during the conversion process
from expanded triangles to dexel segments. Identification
numbers are then transferred to the dexels of the ODM in
the following dexel-wise Boolean union operation.

Fig. 5. Enlargement of an AABB for holding expanded polygons.

Fig. 6. Projection of two enlarged AABBs with expanded polygons.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–66 59

5.2. Parallel dexel storage mechanism

As CUDA threads can simultaneously execute the dexel-
wise Boolean union operations for multiple grid points, we
require a data storage mechanism that is suitable for the
parallel updating of the dexel model. Prior work [34,36] has
implemented such mechanisms using the counting function
and the exclusive scan function [38].

5.2.1. Counting and scan-based method
Consider the resultant dexel model to be stored in a global

array dexel[]. The counting function and scan-based method
store the data in a two-pass manner. On the first pass, the
number of dexels in the model resulting from the Boolean
union operation is counted for each grid point. The counting
results are stored in a global array count[], where count[i]
records the number of dexels for a grid point gpi. A new array
start[] is prepared and filled by applying the exclusive scan
operation to count[]. In this operation, the sum from count[0]
to count[i–1] is set to start[i]. The Boolean union computation
of the two dexel models is then repeated to store the resultant
dexels in dexel[], where resultant dexels for gpi are stored
from dexel[start[i]] to dexel[start[i]þcount[i]�1].

The mechanism described above has two drawbacks. First,
there is a degree of redundancy in executing the same dexel-
wise Boolean operation twice. Second, it is difficult to deal
with the partial modification of the dexel model. Because the
dexel data of the ODM are packed in a 1D array dexel[], the
addition of new dexels to modify part of the dexel model
requires all of the data stored in dexel[] to be updated.

5.2.2. Pseudo-list method
To overcome these problems, we have developed a new

pseudo-list data storage mechanism for the parallel updating of
the dexel model. A linked list structure is suitable for recording
a series of dexels for each grid point. As shown in Fig. 4(a), a
pointer to the first dexel element in the series is assigned to

each grid point. Each dexel element has a pointer to the next
element in the series; the last dexel has a null pointer.
Although there are several methods for implementing a list
structure in CUDA, none have been published or sufficiently
investigated. As CUDA does not allow the dynamic allocation
of device memory during processing, most of the known
methods allocate a sufficient amount of memory in advance as
an array. Instead of a pointer, they use the index number of
each array element to reference a specific element in a list. The
pseudo-list structure proposed in this paper follows this
strategy to realize list-like processing of dexels in the parallel
dexel model construction.
A sufficient number of dexel elements with empty data are

generated and prepared in the global array dexel[]. A global
index counter idx pointing to the first available element in
dexel[] is also prepared and initialized to 0. The pseudo-list
structure uses the following 1D integer arrays:
start[]: start[i] corresponds to a pointer from a grid point

gpi to the first element in the associated dexel list. The size of
start[] is the same as the total number of grid points in the
x–y plane.
end[]: end[i] represents another pointer from gpi to the last

element in the dexel list. This array holds the same number of
elements as start[].
next[]: Each element of next[] represents a pointer to the

next dexel in the same list. The memory allocated to next[]
must be sufficient to allow all dexels generated in the model
construction process to record their next elements.
Before starting the model construction, all elements in start[],

end[], and next[] are initialized to –1.
Consider the addition of a new dexel element to the end of a

dexel list starting from grid point gpi. A dexel with null data is
obtained from the array dexel[idx]. The index number idx is
then updated via the atomic increment function [39]. (In a
parallel processing environment, “atomic” functions are guar-
anteed to execute sequentially. The increment operation of a
global value a is not guaranteed to change its value in order,

Fig. 7. Computation process of a temporal dexel model (a) and Boolean union computation of the temporal dexel model and ODM (b).

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6660

because multiple threads can update the value of a simulta-
neously. By using the atomic incremental function, such
conflicts can be avoided and idx can be used as an incremental
counter.)

The atomic exchange function is then used to replace the
value of end[i] with idx. This function returns the old value of
end[i]. If the returned value old_idx is –1, dexel[idx] is the first
dexel element of a dexel list for gpi. In this case, the value of
start[i] is also updated to idx. Otherwise, old_idx represents the
index number of the last dexel element in the dexel list for gpi.
idx is thus set to next[old_idx] to record that the next dexel
element of dexel[old_idx] is dexel[idx]. Fig. 8 illustrates the
update process for start[i], end[i], and next[] to insert dexel[1],
dexel[5], and dexel[9] to an empty dexel list for grid point gpi.

Employing the pseudo-list allows the simple insertion of a
new dexel element to a dexel list. In contrast to the counting
and scan-based method, our technique realizes the parallel data
storage of the dexel model in a single-pass operation. Because
the modification of a dexel list of a grid point does not affect
the dexel lists of other grid points, we can partially update the
dexel model. That is, the operation of inserting dexels to a
pseudo-list does not have to be executed sequentially, and
multiple threads can execute insertion operations to the same
pseudo-list in parallel. As the atomic incremental function and
atomic exchange function automatically control the execution
sequence of the actual insertions, we can maintain a pseudo-list
with consistent references to dexel elements during the
construction process.

However, the pseudo-list method does not easily allow dexel
elements to be eliminated from a list. In our current imple-
mentation, dexel elimination is realized by simply marking
dexels as invalid. As the dexel operations continue, more
invalid dexels are generated, and these may eventually con-
stitute all predefined dexel elements in dexel[]. To prevent this
problem, our offsetting program prepares a kind of garbage
collection mechanism. At certain processing intervals, the
dexel model data in the graphics memory are transferred to
the main CPU memory. Pointer references to the invalid dexels
are properly eliminated by the host program in the CPU, and a
new dexel model with only valid dexels is written back to the
graphics memory for continued processing on the GPU.

5.3. Parallel offsetting of polygons within multiple AABBs

To further utilize the parallel processing capability of GPUs,
the offset computation for a single leaf AABB given in Section
5.1 is extended to parallel offset computations with multiple
AABBs. In this case, we need a mechanism to avoid conflicts
in the dexel-wise Boolean operation. Fig. 9(a) illustrates such a
case. Consider the offset computations for polygons in AABB0
and AABB1 being simultaneously invoked. Because the
expanded boxes of AABB0 and AABB1 have intersections in
their projection to the x–y plane, a CUDA thread for AABB0
and another thread for AABB1 may simultaneously try to
update dexels on the same grid point gpi in the intersection
region. To avoid such conflicts in our parallel offsetting
framework, multiple AABBs must be selected so that the
projections of their expanded shapes do not intersect.
This selection of expanded AABBs is realized as follows.

We project the part model to the x–y plane to check the
coordinate ranges of the projection in the x- and y-directions. If
the x-coordinate range is larger than the y-coordinate range,
then all leaf AABBs are sorted according to the x-coordinates
of their center points. Otherwise, the AABBs are sorted by y-
coordinates. In Fig. 9(a), small white circles represent the
center points of AABBs. In the following explanation, we
assume the sorting result proceeds according to the x-coordi-
nates. A global variable Rmax is initialized to a small value.
The sorted leaf AABBs are then visited in ascending order. For
each visited AABB, the x-coordinate range of the expanded
box [xmin, xmax] is checked. If xmin is larger than Rmax, then

Fig. 8. Updating a dexel list to insert three new dexels.

Fig. 9. Selection process of AABBs without mutual intersections of their
projections to the x–y plane.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–66 61

this expanded leaf AABB is selected and the value of Rmax is
updated to xmax. This selection process is repeated until all
sorted leaf AABBs have been visited and a set of expanded
AABBs without mutual intersections in their projection
has been obtained. The selection of AABBs according to
y-coordinates is realized in a similar manner.

The parallel offsetting operations are executed with the
selected AABBs. The same AABB selection and offsetting
operations are iterated until all AABBs are used in the offset
computation. Consider the leaf AABB placement shown in
Fig. 9. AABBs are sorted and indexed according to the x-
coordinate of their center points. In the first selection process,
four AABBs are obtained: AABB0, AABB2, AABB4, and
AABB7 (see Fig. 9(a)). The same selection process is then
repeated, giving AABB1, AABB3, AABB6, and AABB8 (see
Fig. 9(b)). In our implementation, the offsetting operation of
selecting multiple AABBs with the above algorithm generally
reduces the computation time by 10–15% over offsetting with
a single AABB.

The set of AABBs selected by the proposed method is not
optimal. In the first selection process, AABB3 (or AABB5),
AABB8, and AABB9 could also be chosen, because they do not
intersect with each other or with AABB0, AABB2, AABB4, and
AABB7 (see Fig. 9(a)). Although we tested several sophisti-
cated methods for selecting more AABBs without mutual
intersections, they generally increase the computation time of
selection and decrease the overall performance of the offsetting
operation.

6. Visualization of sphere-contacting shape

The sphere-contacting shape is visualized using the triple-
dexel representation of the offset part model. Two visualiza-
tions are developed, one that displays the sphere-contacting
shape with points on the part surface and another that displays
the shape as a group of small polygons.

6.1. Visualization with points

In the z-axis-aligned dexel model, a dense set of points
covering the offset surface can be obtained using the z-values
of the end points of a dexel and the (x, y) coordinates of its
corresponding grid point in the x–y plane. Points covering the
offset surface in the x- and y-axis-aligned dexel model can be
obtained in a similar manner. The component spheres,
cylinders, or slabs contributing to the offset shape at these
points can be distinguished by the ID numbers recorded at the
end points of the dexels. These IDs allow a precise calculation
of the normal vector at the end points of the offset surface. If a
dexel end point p on the offset is part of a sphere whose center
is at c, then the vector from c to p corresponds to the normal
vector n at p (see Fig. 10(a)). The normal vectors for points on
the cylinders and slabs can be computed in a similar manner
(see Fig. 10(b) and (c)).

The negative normal vector at p projects the point back to
the part surface as p – r n, where n is the unit normal vector
at p and r is the offset radius (50.0 mm for exterior parts

and 82.5 mm for interior parts). This projection is repeated for
all dexel end points in the triple-dexel model representing the
offset shape, and the sphere-contacting shape is finally
obtained as a set of points covering the part surface.

6.2. Visualization with polygons

We have developed a second technique for visualizing the
sphere-contacting shape. In this method, the offset shape is
again offset in its negative direction, or “shrunk,” by the same
offset radius. This shrunken surface represents the surface
given by a sphere sliding across the part surface. Thus, the
intersection of the shrunken surface and the original surface of
the given part model corresponds to the sphere-contacting
shape on the part.
The shrinking operation is realized using the method

proposed by Wang and Manocha [34]. We place spheres of
the shrinking radius at all dexel end points in the offset model.
The dexel-wise subtraction of these spheres from the given
offset model gives a new dexel model of the shrunken shape
(see S″ in Fig. 11). The pseudo-list mechanism described in
the previous section is used to record the subtracted dexels for

Fig. 10. Normal vector computation methods.

Fig. 11. Dexel of the shrunken shape.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6662

each grid point. In our current implementation, the shrinking
operation uses spheres whose radius is d¼0.1 mm smaller
than the original offset. This is necessary to properly handle a
model with an open surface. As such a model has no thickness,
the offsetting and shrinking operations would produce null
dexels, and the extraction of the sphere-contacting shape
would be difficult.

After the shrinking operation, the remaining triple-dexel
model is converted to an equivalent polyhedral model. The
marching cubes or dual contouring algorithms could be used in
this conversion (see [36] for details). In the current imple-
mentation, small polygons are placed on the top and bottom
sides of the shrunken dexel model to give a set of small
polygons wrapping the surface of the model. The intersection
of the original surface of the part model and the surface of the
shrunken model is determined by selecting the surface poly-
gons of the shrunk model whose distance to the original
surface is sufficiently small (smaller than ε¼0.15 mm in the
current implementation; this value must be greater than d). As
a result, the sphere-contacting shape is obtained as a set of
small polygons.

7. Experimental results

The sphere-contacting shape visualization system was
implemented using Visual Cþþ , CUDA 6.0, and OpenGL,
and a series of computational experiments were performed

using an Intel Core i7 Processor (3.4 GHz) with 12 GB
memory and an nVIDIA GeForce GTX-650 Ti GPU.
Table 1 lists the time required to compute offset models in
the triple-dexel representation. We applied the system to six
polyhedral models of automobile parts. One model was
provided by an automobile parts manufacturer, and the other
five models were selected from CAD demonstration models
and an automobile company archive [40]. To evaluate the
performance of the system under equal conditions, the offset
radius was set to 82.5 mm for all parts. Table 1 also lists the
number of polygons representing the part shape, and the grid
resolutions for the triple-dexel model in the x–y, z–x, and y–z
planes. The computation times for the offsetting operation with
multiple AABBs indicate that the offset shapes of the complex
part models were computed in 10–30 min.
Fig. 12 illustrates six sample parts. Their offset shapes in the

triple-dexel representation are given in Fig. 13. In this figure,
the shaded image of the offset shape was generated by painting
each end point of the dexels with normal vector information at
the point on the offset surface. These normal vectors were
calculated using the method explained in Section 6.1. Figs. 14
and 15 show the detection results of the possible sphere-
contacting shapes of these parts. Fig. 14 illustrates the resultant
shapes with colored points on the part surface, and Fig. 15
visualizes the result using small polygons. These were
extracted by applying the shrinking operation to the offset
surface. Fig. 16 illustrates the difference between these two

Table 1
Computation times required for offsetting.

Sample No. of polygons Grid Res. in x-y plane Grid Res. in z-x plane Grid Res. in y-z plane Required time (s)

A 597,455 895� 1827 1827� 709 895� 709 774.53
B 369,408 1794� 774 774� 913 1794� 913 594.58
C 569,352 1168� 1400 1400� 658 1168� 658 305.21
D 1,488,731 672� 1559 1559� 642 672� 642 1865.50
E 2,097,122 1432� 736 736� 431 1423� 431 573.82
F 2,097,122 1473� 711 711� 512 1473� 512 566.48

Fig. 12. Sample parts.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–66 63

Fig. 13. Offset shapes of the sample parts in the triple-dexel representation.

Fig. 14. Detection results of the sphere-contacting shape for the sample parts. Resulting shapes are visualized with colored points on the part surface.

Fig. 15. Detection results of the sphere-contacting shape for the sample parts. Resulting shapes are visualized with small polygons.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6664

methods. The results are similar, but the visualization with
polygons (Fig. 16(b)) produces finer details on the sphere-
contacting shape.

8. Conclusions

In this paper, we have proposed a new method for assisting
ECE safety inspections of interior and exterior automobile
parts. The proposed method extracts the possible sphere-
contacting shape from the offset surface of the part. The offset
shape of the polyhedral part model is computed as the Boolean
union of expanded shapes of all surface triangles of the model.
The triple-dexel representation of a 3D model is adopted for
stable and precise Boolean computations. A new parallel
offsetting algorithm with a pseudo-list structure and AABB
was developed to accelerate the dexel operations using parallel
computations on a GPU.

Using the offset shape, we extracted the possible sphere-
contacting shape on the part surface. We examined a novel
method of visualization in which the offset surface is itself shrunk
to derive the surface generated by the sphere being slid across the
part surface. The intersection between the part surface and
shrunken surface corresponds to the sphere-contacting shape.
Our system is still in the experimental stage. We are preparing a
field test of the system in the actual automobile design process,
and further improvements based on the comments and requests
from designers will be reflected in our future work.

Conflict of interest

The authors have no conflict of interest directly relevant to
the content of this article.

References

[1] The Web Portal for The Crash Test Engineer [Internet]. European
Regulations related to Crash Testing [cited 2014 Sep 27]. Available from:

〈http://www.crash-network.com/Regulations/ECE_Regulations/ece_regula
tions.html〉.

[2] Japan Automobile Standards Internationalization Center (JASIC) [Inter-
net]. [cited 2014 Sep 27]. Available from: 〈http://www.jasic.org/e/
index_e.htm〉.

[3] EDS Technologies [Internet]. [cited 2014 Sep 27]. Available from: 〈http://
www.edstechnologies.com/〉.

[4] Benouamer MO, Michelucci D. Bridging the gap between CSG and
BREP via a triple ray representation. In: Proceedings of ACM Sympo-
sium on Solid Modeling and Applications; 1997; p. 68–79.

[5] Muller H, Surmann T, Stautner M, Albersmann F, Weinert K. Online
sculpting and visualization of multi-dexel volumes. In: Proceedings of the
8th ACM Symposium on Solid Modeling and Applications; 2003; p.
258–261.

[6] Ren Y, Zhu W, Lee Y-S. Feature conservation and conversion of tri-dexel
volumetric models to polyhedral surface models for product prototyping.
Computer-Aided Design and Applications 2008;5(6)932–41.

[7] Zhang W, Leu MC. NC machining simulation based on triple-dexel
representation. In: Proceedings of International Symposium on Flexible
Automation; 2008; ISFA2008U_100.

[8] Toyota Motor Corporation [Internet]. [cited 2014 Sep 27]. Available
from: 〈http://www.j-tokkyo.com/2006/G06F/JP2006-277304.shtml〉 [in
Japanese].

[9] Yamazaki S, Baba T, Umezu N., Inui M. Fast safety verification of interior
parts of automobiles. In: Proceedings of IEEE International Conference on
Mechatronics and Automation (ICMA); 2011; p. 1957–1962.

[10] Inui M, Umezu N. Fast detection of head colliding shapes on automobile
parts. Journal of Advanced Mechanical Design, Systems, and Manufac-
turing 2013;7(5)818–26.

[11] Inui M, Ohta A. Using GPU to accelerate die and mold fabrication. IEEE
Computer Graphics and Applications. 2007;27(1)82–8.

[12] Rossignac JR, Requicha AAG. Offsetting operations in solid modelling.
Computer Aided Geometric Design 1986;3:129–48.

[13] Maekawa T. An overview of offset curves and surfaces. Computer-Aided
Design 1999;31:165–73.

[14] Pham B. Offset curves and surfaces: a brief survey. Computer-Aided
Design 1992;24(4)223–9.

[15] Hoffman CM. Geometric and Solid Modeling: An Introduction. Burling-
ton (MA): Morgan Kaufmann; 1989.

[16] Satoh T, Chiyokura H. Boolean operations on sets using surface data. In:
Proceedings of ACM Symposium on Solid Modeling Foundations and
CAD/CAM Applications; 1991; Austin, Texas; p. 119–127.

[17] Forsyth M. Shelling and offsetting bodies. In: Proceedings of the Third
Symposium on Solid Modeling and Applications; 1995; Salt Lake City,
Utah; p. 373–381.

Fig. 16. Difference between (a) point-based visualization and (b) polygon-based visualization.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–66 65

http://www.crash-network.com/Regulations/ECE_Regulations/ece_regulations.html
http://www.crash-network.com/Regulations/ECE_Regulations/ece_regulations.html
http://www.jasic.org/e/index_e.htm
http://www.jasic.org/e/index_e.htm
http://www.edstechnologies.com/
http://www.edstechnologies.com/
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref1
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref1
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref1
http://www.j-tokkyo.com/2006/G06F/JP2006-277304.shtml
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref2
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref2
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref2
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref3
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref3
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref4
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref4
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref5
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref5
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref6
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref6
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref7
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref7

[18] VanHook T. Real-time shaded milling display. Computer Graphics
(Proceedings of ACM SIGGRAPH) 1986;20(4)15–20.

[19] Menon JP, Marisa RJ, Zagajac J. More powerful solid modeling through
ray representations. IEEE Computer Graphics and Applications 1994;14
(3)22–35.

[20] Shade J, Gortler S, He LW, Szeliski R. Layered depth image. Computer
Graphics (Proceedings of ACM SIGGRAPH); 1998; p. 231–242.

[21] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface
construction algorithm. Computer Graphics (Proceedings of ACM
SIGGRAPH) 1987;21(4)163–9.

[22] Losasso TJF, Schaefer S, Warren J. Dual contouring of hermite data.
Computer Graphics (Proceedings of ACM SIGGRAPH); 2002; p. 339–346.

[23] Chen Y, Wang H, Rosen DW, Rossignac J. Filleting and rounding using
a point-based method. In: Proceedings of ASME 2005 International
Design Engineering Technical Conference; 2005; p. 533–542.

[24] Chen Y, Wang H, Rosen DW, Rossignac J. A Point-Based Offsetting
Method of Polygonal Meshes. Technical Report. Georgia Institute of
Technology; 2005.

[25] Liu S, Wang CCL. Duplex fitting of zero-level and offset surfaces.
Computer-Aided Design. 2009;41(4)268–81.

[26] Lien JM. Covering Minkowski sum boundary using points with applica-
tions. Computer Aided Geometric Design 2008;25:652–66.

[27] Breen DE, Mauch S. Generating shaded offset surfaces with distance,
closest point and color volumes. In: Proceedings of International Work-
shop on Volume Graphics; 1999; p. 307–320.

[28] Breen DE, Mauch S, Whitaker RT. 3D scan conversion of CSG models
into distance volumes. In: Proceedings of IEEE Symposium on Volume
Visualization; 1998; p. 7–14.

[29] Huang J, Li Y, Crawfis R, Lu SC, Liou SY. A complete distance field
representation. In: Proceedings of the Conference on Visualization; 2001;
p. 247–254.

[30] Liu S, Wang CCL. Fast intersection-free offset surface generation from
freeform models with triangular meshes. IEEE Transaction on Automa-
tion Science and Engineering 2011;8(2)347–60.

[31] Wang CCL, Chen Y. Thickening freeform surfaces for solid fabrication.
Rapid Prototyping Journal 2013;19(6)395–406.

[32] Li W, McMains S. A GPU-based voxelization approach to 3D Min-
kowski sum computation. In: Proceedings of the 14th ACM Symposium
on Solid and Physical Modeling; 2010; p. 31–40.

[33] Li W, McMains S. Voxelized Minkowski sum computation on the GPU
with robust culling. Computer-Aided Design 2011;43(10)1270–83.

[34] Wang CCL, Manocha D. GPU-based offset surface computation using
point samples. Computer-Aided Design 2013;45(2)321–30.

[35] Wang CCL. Computing on rays: a parallel approach for surface mesh
modeling from multi-material volumetric data. Computers in Industry
2011;62(7)660–71.

[36] Zhao H, Wang CCL. Parallel and efficient boolean on polygonal solids.
The Visual Computer 2011;27(6–8)507–17.

[37] Moller T, Haines E. Real-time Rendering. Natick (MA): A K Peters;
1999.

[38] Thrust – Parallel Algorithms Library [Internet]. [cited 2014 Sep 27].
Available from: 〈http://thrust.github.io/〉.

[39] nVIDIA. CUDA Compute unified device architecture programming
guide; 2007.

[40] Honda Motor Company [Internet]. Honda 3D Design Archives [cited
2014 Sep 27]. Available from: 〈http://www.honda-3d.com/〉.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 55–6666

http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref8
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref8
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref9
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref9
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref9
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref10
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref10
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref10
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref11
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref11
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref12
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref12
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref13
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref13
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref13
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref14
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref14
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref15
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref15
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref16
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref16
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref17
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref17
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref17
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref18
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref18
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref19
http://refhub.elsevier.com/S2288-4300(14)00007-4/sbref19
http://thrust.github.io/
http://www.honda-3d.com/

