DOI QR코드

DOI QR Code

Growth of and Bacterial Counts on Several Edible Sprouts Exposed to Spray Ionization

음이온 처리된 몇 가지 새싹채소의 생장과 세균 수

  • Song, Min-Jeong (Division of Animal, Horticultural and Food Science, Chungbuk National University) ;
  • Jeon, Yu-Min (Division of Animal, Horticultural and Food Science, Chungbuk National University) ;
  • Oh, Myung-Min (Division of Animal, Horticultural and Food Science, Chungbuk National University)
  • 송민정 (충북대학교 축산.원예.식품공학부) ;
  • 전유민 (충북대학교 축산.원예.식품공학부) ;
  • 오명민 (충북대학교 축산.원예.식품공학부)
  • Received : 2015.03.02
  • Accepted : 2015.03.13
  • Published : 2015.03.31

Abstract

Edible sprouts are highly nutritious, containing numerous health-promoting phytochemicals and nutrients. However, the process of sprouting is subject to potential contamination by microorganisms attached to the seed coat. The objective of this study was to determine the effects of air anions generated by spray ionization on growth and sterilization of edible sprouts. Treatment with air anions has positive effects on plant growth and sterilization in 4 kinds of sprouts. Hypocotyl length in red cabbage and kale increased approximately 1.26-fold and radicle length of lettuce, red cabbage, and kale increased 1.4 to 1.6-fold compared to the control. The fresh weight of sprouts in the spray-ionization treatment was significantly (16.0-38.5%) higher than that of the controls. Radicle activity in sprouts exposed to anions was higher than that of the control in all species. Bacterial counts on lettuce, red cabbage, and tatsoi decreased significantly (by 41%, 66%, and 19%, respectively), and bacterial colonies also declined in drainage water. Our findings suggest that spray-ionization treatment is useful for improving sprout growth and for sterilizing sprouts.

새싹은 영양분이 풍부한 식품이다. 하지만 생산 과정에서 종피에 있는 미생물에 의한 오염 가능성이 존재한다. 이 실험의 목적은 음이온 처리가 새싹의 생장과 살균에 미치는 효과를 구명하는 것이다. 음이온 처리는 4종류의 새싹의 생장과 살균효과에 긍정적인 효과를 보였다. 대조구에 비해 음이온 처리한 적양배추와 케일 새싹의 배축길이는 약 1.26배 증가하였으며, 상추, 적양배추, 케일 유근의 길이는 1.4~1.6배 증가하였다. 모든 새싹의 생체중은 음이온 처리했을 때 대조구에 비해 16.0~38.5% 유의적으로 증가하였다. 유근의 활력 또한 음이온 처리가 대조구에 비해 유의적으로 높은 수치를 보였다. 음이온 처리된 상추, 적양배추, 다채 새싹의 일반 세균 수는 대조구에 비해 각각 41%, 66%, 19% 감소하였으며, 배수되는 물의 세균 수 또한 감소되었다. 결국 음이온처리는 새싹의 생장을 향상시켰으며, 동시에 살균하는데도 효과적이었다.

Keywords

References

  1. Alexander, W. and W.P. Hammes. 2003. Thermal seed treatment to improve the food safety status of sprouts. J. Appl. Bot. 77:152-155.
  2. Arnold, J.W., D.H. Boothe, and B.W. Mitchell. 2004. Use of negative air ionization for reducing bacterial pathogens and spore on stainless steel surfaces. Poulty Sci. 13:200-206.
  3. Cevallos-Casals, B.A. and L. Cisneros-Zevallos. 2010. Impact of germination on phenolic content and antioxidant activity of 13 edible species. Food Chem. 119:1485-1490. https://doi.org/10.1016/j.foodchem.2009.09.030
  4. Chee CK, Effect of air anion. Living books. 2nd ed, Korea (2009).
  5. Elkiey, T.M., S. Bhartendu, and N. Barthakur. 1985. Air ion effect on respiration and photosynthesis of barley and Antirrhinum majus. Intl. J. Biometeorol. 29:285-292. https://doi.org/10.1007/BF02189659
  6. Gawlik-Dziki, U., M. Jezyna, M. Swieca, D. Dziki, B. Baraniak, and J. Czyz. 2012. Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Res. Intl. 49:469-476. https://doi.org/10.1016/j.foodres.2012.08.010
  7. Jones, P.H. and D. Prasad. 1969. The use of tetrazolium salts as a measure of sludge activity. J. Water Pollution Control Federation 41:441-449.
  8. Kellogg, E.W., M.G. Yost, N. Barthakur, and A.P. Krueger. 1979. Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus. Nature 281:400-401. https://doi.org/10.1038/281400a0
  9. Kotaka, S. 1978. Effects of air ions on microorganisms and other biological materials. Critical Rev. Microbiol. 6:109-149. https://doi.org/10.3109/10408417809090621
  10. Krueger, A.P., S. Kotaka, and C.P. Andriese. 1962. Studies on the effects of gaseous ions on plant growth. The influence of positive and negative air ions on the growth of Avena sativa. J. Gen. Physiol. 45:879-895. https://doi.org/10.1085/jgp.45.5.879
  11. Krueger, A.P., S. Kotaka, and C.P. Andriese. 1963a. A study of the mechanism of air-ion-induced growth stimulation in Hordeum vulgaris. Intl. J. Biometeorol. 7:17-25. https://doi.org/10.1007/BF02189178
  12. Krueger, A.P., S. Kotaka, and C.P. Andriese. 1963b. Gaseousion-induced stimulation of cytochrome c biosynthesis. Nature 200:707-708. https://doi.org/10.1038/200707a0
  13. Krueger, A.P., S. Kotaka, and C.P. Andriese. 1965. Air ion effects on the oxygen consumption of barley seedlings. Nature 208:1112-1113. https://doi.org/10.1038/2081112a0
  14. Lim, K.T., J.H. Kim, and J.H. Chung. 2011. Development of an automatic brown rice germinating system of air-phase type with intermittent water spraying and anion radiation. J. Biosystems Eng. 36:187-194. https://doi.org/10.5307/JBE.2011.36.3.187
  15. Park, B.S. 2006. Characteristics of negative ions generated by Lenard effect. J. Natural Sci. 5:38-43.
  16. Penas, E., R. Gomez, J. Frias, and C. Vidal-Valverde. 2010. Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control 21:82-88. https://doi.org/10.1016/j.foodcont.2009.04.008
  17. Shargawi, J.M., E.D. Theaker, D.B. Drucker, T. MacFarlane, and A.J. Duxbury. 1999. Sensitivity of Candida albicans to negative air ion streams. J. Appl. Microbiol. 87:889-897. https://doi.org/10.1046/j.1365-2672.1999.00944.x
  18. Song, M.-J., T.-H. Kang, C.-S. Han, and M.-M. Oh. 2014. Air anions enhance lettuce growth in plant factories. Hort. Environ. Biotechnol. 55:293-298. https://doi.org/10.1007/s13580-014-1016-3
  19. Taormina, P.J., L.R. Beuchat, and L. Slutsker. 1999. Infections associated with eating seed sprouts: an international concern. Emerging Infectious Diseases 5:626-634. https://doi.org/10.3201/eid0505.990503
  20. Wachter, S.L. and R.E. Widmer. 1976. The effects of negative air ions on plant growth. HortScience 11:576-578.
  21. Waje, C.K. and J.H. Kwon. 2007. Improving the food safety of seed sprouts through irradiation treatment. Food Sci. Biotechnol. 16:171-176.
  22. Waje, C.K., S.Y. Jun, Y.K. Lee, B.N. Kim, D.H. Han, C. Jo, and J.H. Kwon. 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Control 20:200-204. https://doi.org/10.1016/j.foodcont.2008.04.005
  23. Yuan, G., X. Wang, R. Guo, and Q. Wang. 2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 121:1014-1019. https://doi.org/10.1016/j.foodchem.2010.01.040
  24. Yun, S.J. and Y.J. Seo. 2013. Removal of bacteria and odor gas by an alumina support catalyst and negative air ions. J. Aerosol Sci. 58:33-40. https://doi.org/10.1016/j.jaerosci.2012.12.006