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AN INTEGRAL REPRESENTATION, SOME INEQUALITIES,

AND COMPLETE MONOTONICITY OF THE BERNOULLI

NUMBERS OF THE SECOND KIND

Feng Qi and Xiao-Jing Zhang

Abstract. In the paper, the authors discover an integral representation,
some inequalities, and complete monotonicity of the Bernoulli numbers
of the second kind.

1. Introduction

In number theory, the Bernoulli numbers of the second kind bn for n ∈ N0 =
N ∪ {0} may be generated by

(1)
x

ln(1 + x)
=

∞
∑

n=0

bnx
n,

where N denotes the set of positive integers. They are also known as the
Cauchy numbers of the first kind (see [5, p. 294]), the Gregory coefficients, or
logarithmic numbers. The first few Bernoulli numbers of the second kind bn
are

b0 = 1, b1 =
1

2
, b2 = − 1

12
, b3 =

1

24
, b4 = − 19

720
, b5 =

3

160
.

The first main result of this paper is the following integral representation of
bn for n ∈ N.

Theorem 1. The Bernoulli numbers of the second kind bn may be represented

as

(2) bn = (−1)n+1

∫ ∞

1

1

{[ln(t− 1)]2 + π2}tn d t, n ∈ N.
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Recall from [21, p. 108, Definition 4] that a sequence {µn}0≤n≤∞ is said
to be completely monotonic if its elements are non-negative and its successive
differences are alternatively non-negative, that is

(−1)k∆kµn ≥ 0, k, n ∈ N0,

where

∆kµn =

k
∑

m=0

(−1)m
(

k

m

)

µn+k−m.

Recall from [21, p. 163, Definition 14a] that a completely monotonic sequence
{an}n≥0 is minimal if it ceases to be completely monotonic when a0 is de-
creased.

Let λ = (λ1, λ2, . . . , λn) ∈ R
n and µ = (µ1, µ2, . . . , µn) ∈ R

n. A sequence λ
is said to be majorized by µ (in symbols λ � µ) if

k
∑

ℓ=1

λ[ℓ] ≤
k

∑

ℓ=1

µ[ℓ], k = 1, 2, . . . , n− 1 and

n
∑

ℓ=1

λℓ =

n
∑

ℓ=1

µℓ,

where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and µ[1] ≥ µ[2] ≥ · · · ≥ µ[n] are respectively the
components of λ and µ in decreasing order. A sequence λ is said to be strictly
majorized by µ (in symbols λ ≺ µ) if λ is not a permutation of µ. For example,

(

1

n
, . . . ,

1

n

)

≺
(

1

n− 1
, . . . ,

1

n− 1
, 0

)

≺
(

1

2
,
1

2
, 0, . . . , 0

)

≺ (1, 0, . . . , 0).

For more information on the theory of majorization and its applications, please
refer to monographs [8, 9] and closely related references therein.

Based on Theorem 1, the following inequalities and properties of the Bernou-
lli numbers of the second kind bn are discovered.

Theorem 2. The infinite sequence {(−1)nbn+1}n≥0 is completely monotonic

and minimal.

Theorem 3. Let m ∈ N and ak for 1 ≤ k ≤ m be nonnegative integers. Then

(3)
∣

∣(ak + aj)!bak+aj+1

∣

∣

m
≥ 0

and

(4)
∣

∣(−1)ak+aj (ak + aj)!bak+aj+1

∣

∣

m
≥ 0,

where |akj |m denotes a determinant of order m with elements akj.

Theorem 4. Let m ∈ N and let λ and µ be two m-tuples of nonnegative

numbers such that λ � µ. Then

(5)

∣

∣

∣

∣

∣

m
∏

ℓ=1

λℓ!bλℓ+1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

m
∏

ℓ=1

µℓ!bµℓ+1

∣

∣

∣

∣

∣

.

Corollary 1. The infinite sequence {(−1)nn!bn+1}n≥0 is logarithmically con-

vex.
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2. Lemmas

To prove our main results, we need the following two integral representations.

Lemma 1 ([3, p. 2130]). Let C be the set of complex numbers and let

ln z = ln |z|+ i arg z

be the principal branch of the holomorphic extension of lnx from the open half-

line (0,∞) to the cut plane

A = C \ (−∞, 0],

where −π < arg z < π and i =
√
−1 is the imaginary unit. The function

1
ln(1+z) for z ∈ C \ (−∞, 0] has the integral representation

(6)
1

ln(1 + z)
=

1

z
+

∫ ∞

1

1

[ln(t− 1)]2 + π2

d t

z + t
.

Lemma 2. The function

F (z) =







z

(1 + z) ln(1 + z)
, z ∈ C \ (−∞,−1] \ {0}

1, z = 0

has the integral representation

(7) F (z) =

∫ ∞

0

t+ 1

t[(ln t)2 + π2]

d t

t+ 1 + z
, z ∈ C \ (−∞,−1].

First proof of Lemma 2. For z = εeθi with θ ∈
[

−π
2 ,

π
2

]

and ε ∈ (0, 1), by
standard argument, we have

|zF (z − 1)|2 =

∣

∣

∣

∣

εeθi − 1

ln(εeθi)

∣

∣

∣

∣

2

=
1− 2ε cos θ + ε2

(ln ε)2 + θ2
→ 0

uniformly as ε → 0+. Consequently,

(8) lim
ε→0+

[zF (z − 1)] = 0

uniformly.
For θ ∈ (−π, π) and z = reθi, by standard argument, we have

(9) |F (z − 1)| =
∣

∣

∣

∣

reθi − 1

reθi ln(reθi)

∣

∣

∣

∣

=

√

1 + 2r cos θ + r2

r2[(ln r)2 + θ2]
→ 0

uniformly as r → ∞.
For t ∈ (0,∞) and ε ∈ (0, 1), we have

F (−t− 1 + εi) =
−t− 1 + εi

(−t+ εi) ln(−t+ εi)

=
−t− 1 + εi

(−t+ εi)[ln | − t+ εi|+ i arg(−t+ εi)]
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=
−t− 1 + εi

(−t+ εi)
[

ln | − t+ εi|+ i
(

π − arctan ε
t

)]

→ t+ 1

t(ln t+ πi)

=
(t+ 1)(ln t− πi)

t[(ln t)2 + π2]

as ε → 0+. In other words, for t ∈ (0,∞),

(10) lim
ε→0+

ℑF (−t− 1 + εi) = − π(t+ 1)

t[(ln t)2 + π2]
.

Let D be a bounded domain with piecewise smooth boundary. If f(z) is
analytic on D and extendable smoothly to the boundary of D, then

(11) f(z) =
1

2πi

∮

∂D

f(w)

w − z
dw, z ∈ D,

which is known as the Cauchy integral formula. See [7, p. 113]. For any fixed
point z0 = x0 + iy0 ∈ C \ (−∞, 0], choose ε and r such that

{

0 < ε < |y0| ≤ |z0| < r, y0 6= 0,

0 < ε < x0 = |z0| < r, y0 = 0,

and consider the positively oriented contour C(ε, r) in C \ (−∞,−1] consisting
of the half circle z = −1+εeθi for θ ∈

[

−π
2 ,

π
2

]

and the half lines z = −1+x±εi
for x ≤ 0 until they cut the circle |z + 1| = r, which close the contour at the
points −1 − r(ε) ± εi, where 0 < r(ε) → r as ε → 0. By the formula (11), we
have

F (z0) =
1

2πi

[
∫ −π/2

π/2

iεeθiF
(

εeθi − 1
)

εeθi − 1− z0
d θ +

∫ 0

−r(ε)

F (x− 1 + εi)

x− 1 + εi− z0
dx

(12)

+

∫ −r(ε)

0

F (x− 1− εi)

x− 1− εi− z0
dx+

∫ arg[−r(ε)+εi]

arg[−r(ε)−εi]

ireθiF
(

reθi − 1
)

reθi − 1− z0
d θ

]

.

By the formula (8), it follows that

(13) lim
ε→0+

∫ −π/2

π/2

iεeθiF
(

εeθi − 1
)

εeθi − 1− z0
d θ = 0.

In virtue of the limit (9), it can be derived that

lim
ε→0+
r→∞

∫ arg[−r(ε)+εi]

arg[−r(ε)−εi]

ireθiF
(

reθi − 1
)

reθi − 1− z0
d θ

= lim
r→∞

∫ π

−π

ireθiF
(

reθi − 1
)

reθi − 1− z0
d θ

= 0.

(14)
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Making use of the obvious fact that F (z) = F (z) and the limit (10) yields that

(15)

∫ 0

−r(ε)

F (x− 1 + εi)

x− 1 + εi− z0
dx+

∫ −r(ε)

0

F (x− 1− εi)

x− 1− εi− z0
dx

=

∫ 0

−r(ε)

[

F (x− 1 + εi)

x− 1 + εi− z0
− F (x− 1− εi)

x− 1− εi− z0

]

dx

= 2i

∫ 0

−r(ε)

(x− 1− z0)ℑF (x− 1 + εi)− εℜF (x− 1 + εi)

(x − 1 + εi− z0)(x − 1− εi− z0)
dx

→ 2i

∫ 0

−r

limε→0+ ℑF (x− 1 + εi)

x− 1− z0
dx

= −2i

∫ r

0

limε→0+ ℑF (−t− 1 + εi)

t+ 1 + z0
d t

→ −2i

∫ ∞

0

limε→0+ ℑF (−t− 1 + εi)

t+ 1 + z0
d t

= 2πi

∫ ∞

0

t+ 1

t[(ln t)2 + π2]

d t

t+ 1 + z0

as ε → 0+ and r → ∞. Substituting equations (13), (14), and (15) into (12)
and simplifying produce the integral representation (7). The proof of Lemma 2
is complete. �

Second proof of Lemma 2. In all treatments of Pick functions, a main example
is the principal logarithm ln defined in the cut plane A as well as

− 1

ln z
= − 1

z − 1
+

∫ 0

−∞

1

(t− z)[(ln t)2 + π2]
d t.

This formula is equivalent to [2, (1.4)]. Multiplying the identity
∫ ∞

0

1

t[(ln t)2 + π2]
= 1

by 1
z and inserting it in the previous formula yield

z − 1

z ln z
=

∫ ∞

0

[

1

tz
+

z − 1

z(t+ z)

]

d t

(ln t)2 + π2
=

∫ ∞

0

1 + t

(t+ z)[(ln t)2 + π2]
d t,

which is the formula (7). The proof of Lemma 2 is complete. �

3. Proofs of theorems

Now we prove Theorems 1 to 4 and Corollary 1.

First proof of Theorem 1. By (6), we have

(16)
x

ln(1 + x)
= 1 +

∫ ∞

1

1

[ln(t− 1)]2 + π2

x

x+ t
d t
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and
[

x

ln(1 + x)

](k)

=

∫ ∞

1

1

[ln(t− 1)]2 + π2

(

x

x+ t

)(k)

d t

=

∫ ∞

1

1

[ln(t− 1)]2 + π2

(

1− t

x+ t

)(k)

d t

= (−1)k+1k!

∫ ∞

1

t

[ln(t− 1)]2 + π2

1

(x+ t)k+1
d t

(17)

for k ∈ N. On the other hand, by (1), we also have

(18)

[

x

ln(1 + x)

](k)

=

∞
∑

n=k

bn
n!

(n− k)!
xn−k.

Combining (17) with (18) leads to

∞
∑

n=k

bn
n!

(n− k)!
xn−k = (−1)k+1k!

∫ ∞

1

t

[ln(t− 1)]2 + π2

1

(x+ t)k+1
d t.

Letting x → 0+ on both sides of the above equation produces

k!bk = (−1)k+1k!

∫ ∞

1

1

[ln(t− 1)]2 + π2

1

tk
d t.

Thus, the formula (2) is proved. �

Second proof of Theorem 1. By the integral representation (7), we have

x

ln(1 + x)
=

∫ ∞

1

t

(t− 1){[ln(t− 1)]2 + π2}
1 + x

x+ t
d t

and
[

x

ln(1 + x)

](k)

=

∫ ∞

1

t

(t− 1){[ln(t− 1)]2 + π2}

(

1 + x

x+ t

)(k)

d t

=

∫ ∞

1

t

(t− 1){[ln(t− 1)]2 + π2}

(

1 +
1− t

x+ t

)(k)

d t

= (−1)k+1k!

∫ ∞

1

t

[ln(t− 1)]2 + π2

1

(x + t)k+1
d t

(19)

for k ∈ N. Combining (19) with (18) leads to

(20)

∞
∑

n=k

bn
n!

(n− k)!
xn−k = (−1)k+1k!

∫ ∞

1

t

[ln(t− 1)]2 + π2

1

(x+ t)k+1
d t.

Letting x → 0+ on both sides of (20) yields the formula (2). The proof of
Theorem 1 is complete. �
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First proof of Theorem 2. Theorem 4a in [21, p. 108] reads that a necessary
and sufficient condition that the sequence {µn}∞0 should have the expression

(21) µn =

∫ 1

0

tn dα(t)

for n ≥ 0, where α(t) is non-decreasing and bounded for 0 ≤ t ≤ 1, is that it
should be completely monotonic. Theorem 14a in [21, p. 164] states that a com-
pletely monotonic sequence {µn}n≥0 is minimal if and only if the equality (21)
is valid for n ≥ 0 and α(t) is a non-decreasing bounded function continuous at
t = 0.

Setting in the equality (21)

α(t) =

∫ t

0

1

s{[ln(1/s− 1)]2 + π2} d s

for t ∈ [0, 1] and α(1) = b1 = 1
2 yields the required complete monotonicity and

minimality. �

Second proof of Theorem 2. From (2), it follows that for n ∈ N

(−1)n+1bn =

∫ ∞

1

1

{[ln(t− 1)]2 + π2}tn d t

=

∫ 0

1

1

{[ln(1/s− 1)]2 + π2}s
n d

(

1

s

)

=

∫ 1

0

1

{[ln(1/s− 1)]2 + π2}s
n−2 d s

=

∫ 1

0

1

s{[ln(1/s− 1)]2 + π2}s
n−1 d s

, cn−1.

Since c0 = b1 = 1
2 and the function 1

s{[ln(1/s−1)]2+π2} is positive on (0, 1), then

the complete monotonicity and minimality of the sequence {cn}∞0 is readily
obtained. The proof of Theorem 2 is complete. �

Proof of Theorem 3. A function f is said to be completely monotonic on an
interval I if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for x ∈ I
and n ≥ 0. See [11, Chapter XIII] and [21, Chapter IV].

From the proofs of Theorem 1, we observe that

(22) bn = (−1)n+1 lim
x→0+

hn(x)

and

(23) hn(x) =

∫ ∞

1

1

{[ln(t− 1)]2 + π2}(t+ x)n
d t

is completely monotonic on [0,∞).
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In [10], or see [11, p. 367], it was obtained that if f is a completely monotonic
function on [0,∞), then

(24)
∣

∣f (ai+aj)(x)
∣

∣

m
≥ 0

and

(25)
∣

∣(−1)ai+ajf (ai+aj)(x)
∣

∣

m
≥ 0,

where |aij |m denotes a determinant of order m with elements aij and ai for
1 ≤ i ≤ m are nonnegative integers. Applying f in (24) and (25) to the function
hn(x) yields

∣

∣h(ai+aj)
n (x)

∣

∣

m
≥ 0

and
∣

∣(−1)ai+ajh(ai+aj)
n (x)

∣

∣

m
≥ 0,

that is,

(26)

∣

∣

∣

∣

(−1)ai+aj
(n+ ai + aj − 1)!

(n− 1)!
hn+ai+aj

(x)

∣

∣

∣

∣

m

≥ 0

and

(27)

∣

∣

∣

∣

(n+ ai + aj − 1)!

(n− 1)!
hn+ai+aj

(x)

∣

∣

∣

∣

m

≥ 0.

Letting x → 0+ in (26) and (27) and making use of (22) produce

(28)

∣

∣

∣

∣

(−1)ai+aj
(n+ ai + aj − 1)!

(n− 1)!
(−1)n+ai+aj+1bn+ai+aj

∣

∣

∣

∣

m

≥ 0

and

(29)

∣

∣

∣

∣

(n+ ai + aj − 1)!

(n− 1)!
(−1)n+ai+aj+1bn+ai+aj

∣

∣

∣

∣

m

≥ 0.

Further simplifying (28) and (29) leads to
∣

∣(−1)n+1(n+ ai + aj − 1)!bn+ai+aj

∣

∣

m
≥ 0

and
∣

∣(−1)n+ai+aj+1(n+ ai + aj − 1)!bn+ai+aj

∣

∣

m
≥ 0,

which are equivalent to (3) and (4). Theorem 3 is thus proved. �

Proof of Theorem 4. In [20, p. 106, Theorem A] and [11, p. 367, Theorem 2],
a minor correction of [6, Theorem 1], it was obtained that if f is a completely
monotonic function on (0,∞) and λ � µ, then

(30)

∣

∣

∣

∣

∣

n
∏

i=1

f (λi)(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∏

i=1

f (µi)(x)

∣

∣

∣

∣

∣

.

Applying the inequality (30) to hn(x), defined by (23), creates
∣

∣

∣

∣

∣

m
∏

i=1

(−1)λi
(n+ λi − 1)!

(n− 1)!
hn+λi

(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

m
∏

i=1

(−1)µi
(n+ µi − 1)!

(n− 1)!
hn+µi

(x)

∣

∣

∣

∣

∣



INTEGRAL REPRESENTATION AND PROPERTIES OF BERNOULLI NUMBERS 995

which can be simplified as
∣

∣

∣

∣

∣

m
∏

i=1

(n+ λi − 1)!hn+λi
(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

m
∏

i=1

(n+ µi − 1)!hn+µi
(x)

∣

∣

∣

∣

∣

.

Further taking x → 0+ and utilizing (22) turn out
∣

∣

∣

∣

∣

m
∏

i=1

(n+ λi − 1)!(−1)n+λi+1bn+λi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

m
∏

i=1

(n+ µi − 1)!(−1)n+µi+1bn+µi

∣

∣

∣

∣

∣

which is equivalent to (5). The proof of Theorem 4 is complete. �

Proof of Corollary 1. It is clear that (i, i+2) ≻ (i+1, i+1) for i ≥ 0. Therefore,
by virtue of (5), we have

(i!bi+1)[(i+ 2)!bi+3] ≥ [(i + 1)!bi+2]
2.

This implies the required logarithmic convexity.
This conclusion can also be deduced from Theorem 3. The proof of Theo-

rem 1 is thus complete. �

4. Remarks

Finally, we would like to give some remarks on something related to the
integral representations (6) and (7).

Remark 1. In [1, p. 230, 5.1.32], it is listed that

ln
b

a
=

∫ ∞

0

e−au − e−bu

u
du.

As a result, we have

ln[ln(1 + x)] =

∫ ∞

0

e−u − e−u ln(1+x)

u
du =

∫ ∞

0

e−u − (1 + x)−u

u
du

and, by a differentiation,

(31)

1

(1 + x) ln(1 + x)
=

∫ ∞

0

1

(1 + x)u+1
du

=

∫ ∞

0

[

1

Γ(1 + u)

∫ ∞

0

tue−(1+x)t d t

]

du

=

∫ ∞

0

[
∫ ∞

0

tu

Γ(1 + u)
du

]

e−(1+x)t d t,

where Γ(z) is the classical gamma function which may be defined by the Euler
integral

(32) Γ(z) =

∫ ∞

0

tz−1e−t d t, ℜ(z) > 0.

The integral representation (31) means that 1
(1+x) ln(1+x) is a completely mono-

tonic function on (0,∞). In other words, the function 1
ln(1+x) is logarithmically
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completely monotonic on (0,∞). More strongly, it was claimed in [3, p. 2130,
(34)] and [4, p. 12, (33)] that the function 1

ln(1+x) is a Stieltjes transform. For

information on the notions “logarithmically completely monotonic function”
and “Stieltjes transform”, please refer to [14, Remark 8], [15, Section 1], [16,
Remark 4.7], the monograph [18], and many other closely-related references
therein.

From (31) and by integration by part, it is not difficult to obtain that

1

ln(1 + x)
=

∫ ∞

0

[
∫ ∞

0

tu−1

Γ(u)
du

]

e−(1+x)t d t, x > 0.

By induction and integration by part, we can obtain

(1 + x)k

ln(1 + x)
=

∫ ∞

0

[
∫ ∞

0

tu−k−1

Γ(u− k)
du

]

e−(1+x)t d t

=

∫ ∞

0

[
∫ ∞

−k

tu−1

Γ(u)
du

]

e−(1+x)t d t

for x > 0 and k ∈ Z, where Z denotes the set of all integers and the clas-
sical gamma function Γ(z) given in (32) may be extended analytically to
C \ {0,−1,−2, . . .} by the Gauss formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
.

See [19, Section 1.1].

Remark 2. By the way, the term 1
z in (6) was lost in [3, p. 2130, (34)] and [4,

p. 12, (33)] and was corrected in [17, 22].

Remark 3. The integral representation (7) in Lemma 2 has been utilized in the
paper [13].

Remark 4. A function f : I ⊆ (0,∞) → [0,∞) is called a Bernstein function
on I if f(x) has derivatives of all orders and f ′(x) is completely monotonic on
I. See the monograph [18]. We claim that the generating function x

ln(1+x) of

the Bernoulli numbers of the second kind bk is a Bernstein function on (0,∞).
This can be proved by two approaches below.

(1) The integral representation (16) shows us that the function x
ln(1+x) is

positive and increasing on (0,∞). The integral representation (17)
reveals that the first derivative of x

ln(1+x) is completely monotonic on

(0,∞). So the function x
ln(1+x) is a Bernstein function on (0,∞).

(2) It is not difficult to see that

x

ln(1 + x)
=

∫ 1

0

(1 + x)t d t

and the function (1 + x)t for t ∈ (0, 1) is a Bernstein function.
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Remark 5. This paper is a combined and revised version of the preprints [12, 17]
and Chapter 5 of the thesis [22].
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paper.
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