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RESOLUTION OF UNMIXED BIPARTITE GRAPHS

Fatemeh Mohammadi and Somayeh Moradi

Abstract. Let G be a graph on the vertex set V (G) = {x1, . . . , xn} with
the edge set E(G), and let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Two monomial ideals are associated to G, the edge ideal I(G)
generated by all monomials xixj with {xi, xj} ∈ E(G), and the vertex

cover ideal IG generated by monomials
∏

xi∈C xi for all minimal vertex

covers C of G. A minimal vertex cover of G is a subset C ⊂ V (G) such
that each edge has at least one vertex in C and no proper subset of C has
the same property. Indeed, the vertex cover ideal of G is the Alexander
dual of the edge ideal of G. In this paper, for an unmixed bipartite
graph G we consider the lattice of vertex covers LG and we explicitly
describe the minimal free resolution of the ideal associated to LG which
is exactly the vertex cover ideal of G. Then we compute depth, projective
dimension, regularity and extremal Betti numbers of R/I(G) in terms of
the associated lattice.

Introduction

In recent years the ideals associated to graphs have been intensively studied.
One central question in this context is to describe the minimal free resolution
of these ideals, and to give some explicit combinatorial formulas for their ho-
mological invariants. In general it is hard to give uniform formulas for the
projective dimension or the regularity for all graphs. Nevertheless there are
some classes of graphs where the homological data of the edge ideals can be
described. The problem has been studied for two well-known families of graphs,
chordal and bipartite graphs. For Cohen-Macaulay bipartite graphs a nice and
complete answer is known, see [5]. In particular, in these cases one knows the
projective dimension of the edge ideal. There are also several papers in which
the regularity of edge ideals has been studied, see [3, 4, 11, 12, 15, 17].

In this paper we consider unmixed bipartite graphs in which all minimal
vertex covers are of the same cardinality. Let G be an unmixed bipartite graph
with vertex set V (G) = {x1, . . . , xn}∪{y1, . . . , ym}. Then there exists a perfect
matching for G, see [16]. Therefore we may assume that {xi, yi} is an edge of
G for all i and it follows that m = n. So each minimal vertex cover of G is of
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the form {xi1 , . . . , xis , yis+1
, . . . , yin}, where {i1, . . . , in} = [n]. Let Bn be the

Boolean lattice on the set X = {x1, . . . , xn}. In [6] it is shown that the set

LG = {C ∩ {x1, . . . , xn} : C is a minimal vertex cover of G}

is a sublattice of Bn which contains ∅ and X , and for any such sublattice L
of Bn, there exists an unmixed bipartite graph G such that L = LG. Here
∧ and ∨ in LG are just taking the intersection and union. In our description
of the resolution of the vertex cover ideal of an unmixed bipartite graph, we
use in a substantial way this lattice associated to the graph. Attached to the
lattice LG is a monomial ideal HLG

:= (up : p ∈ LG) in the polynomial ring
K[x1, . . . , xn, y1, . . . , yn], where up = XpY[n]\p for Xp =

∏
i∈p xi and Y[n]\p =

∏
j∈[n]\p yj.

In Section 1 we describe the multigraded minimal free resolution of the vertex
cover ideal of G in terms of its associated lattice. In fact, the resolution we
describe in Theorem 1.2 is a variation of the resolution of Hibi ideals of meet-
distributive semilattices, given in [8, Theorem 2.1]. More important is the fact,
that the multigraded basis elements of the resolution, can be identified with
the Boolean sublattices of LG, see Proposition 2.1. Having this identification,
it turns out that the multigraded extremal Betti numbers correspond to the
maximal Boolean sublattices of LG.

In Section 2 we compute the homological invariants of I(G) in terms of
the lattice. Since the ideal HLG

= IG is the Alexander dual of I(G), we
may apply the Bayer-Charalambous-Popescu theorem [1, Theorem 2.8] which
relates the multigraded extremal Betti numbers of HLG

and I(G). With this
information at hand, we can express the depth and regularity of R/I(G) in
terms of the lattice LG and invariants of the graph G, see Corollaries 2.3
and 2.4. One can also obtain a lower bound for the last nonzero total Betti
number of R/I(G). We do not know of any example where this lower bound
is not achieved. It would always be obtained if one could prove the following:
all nonzero multigraded Betti numbers in the last step of the resolution are
extremal (in the multigraded sense). There is a simple argument, given in
the proof of Proposition 2.10 that whenever I is a Cohen-Macaulay monomial
ideal, then all multigraded extremal Betti numbers appear at the end of the
resolution of I.

Kummini in [13] has also computed the depth and regularity of unmixed
bipartite graphs, but his approach and the terms in which he expresses these
invariants differ from ours.

1. Minimal free resolution of HLG

The purpose of this section is to construct a resolution of the ideal HLG

which is a modification of the resolution given [8, Theorem 2.1] adopted to our
situation. The differences between our resolution and the one given in [8] arise
from the fact that the lattices under consideration are embedded differently
into Boolean lattices. This fact is important, because the multidegrees of the
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resolution depend upon the embedding. For p ∈ LG, the set of lower neighbors
of p in LG is denoted by N(p). In order to guarantee the minimality of the
resolution which we are going to describe, we need the following result.

Lemma 1.1. Let p ∈ LG. For any two distinct subsets S, S′ ⊆ N(p), we have

∧{q : q ∈ S} 6= ∧{q : q ∈ S′}.

Proof. Let S and S′ be distinct subsets of N(p). One can assume that S * S′.
Let q1 ∈ S \ S′. If ∧{q : q ∈ S} = ∧{q : q ∈ S′}, then

(∧{q : q ∈ S}) ∨ q1 = (∧{q : q ∈ S′}) ∨ q1.

Since LG is distributive ∧{q ∨ q1 : q ∈ S} = ∧{q ∨ q1 : q ∈ S′}. For any q ∈ S′,
q ∨ q1 = p, therefore ∧{q ∨ q1 : q ∈ S′} = p. But then ∧{q ∨ q1 : q ∈ S} = q1, a
contradiction. �

From the above lemma it is easy to see that for every pair of subsets S and S′

of N(p) with S ⊆ S′, we have |S′|− |S| ≤ |∧{q : q ∈ S}|− |∧{q : q ∈ S′}|. For
p, q ∈ LG, the sublattice of LG with maximal element q and minimal element p
is called an interval of LG and is denoted by [p, q]. In the following we denote

by 0̂ and 1̂ the minimal and maximal element of LG, respectively. For any
p ∈ L, the rank of p which is denoted by rank(p), is the maximal length of
chains descending from p. We extend the partial rank order on LG to a total
order ≺.

The proof of the following theorem is similar, up to some modification, to
the proof of [8, Theorem 2.1], which was proved for a meet-semilattice. For
more emphasis we state the proof in the lattice case.

Theorem 1.2. There exists a minimal multigraded free resolution F of HLG

such that for each i ≥ 0, the free module Fi has a basis with basis elements

b(p;S), where p ∈ LG and S is a subset of the set of lower neighbors N(p) of p
with |S| = i and multidegree of b(p;S) is the least common multiple of up and

all uq with q ∈ S.

Proof. The construction of resolution is as in the proof of [8, Theorem 2.1]
by mapping cone. For any p ∈ LG we construct inductively a complex F(p)
which is a multigraded free resolution of the ideal HLG

(p) = (uq : q � p). The

complex F(0̂) is defined as Fi(0̂) = 0 for i > 0 and F0(0̂) = S. Now, let p ∈ LG

and q ∈ LG, q ≺ p be the element preceding p. Then HLG
(p) = (HLG

(q), up),
and hence we have the exact sequence of multigraded S-modules

0 −→ (S/L)(−multideg up) −→ S/HLG
(q) −→ S/HLG

(p) −→ 0,

where L is the colon ideal HLG
(q) : up. Let uq′/ gcd(uq′ , up) ∈ L, where q′ ≺ q

and let t ∈ [q′ ∧ q, p]∩N(p). Then ut/ gcd(ut, up) divides uq′∧p/ gcd(uq′∧p, up)
and uq′∧p/ gcd(uq′∧p, up) divides u

′
q/ gcd(u

′
q, up). Therefore we have

L = ({ut/ gcd(ut, up)}t∈N(p)).
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Let T be the Taylor complex associated with the sequence ut/ gcd(ut, up), t ∈
N(p), where the order of the sequence is given by the order ≺ on the elements
of LG. Then Ti has a basis with elements et1 ∧ et2 ∧ · · · ∧ eti , where t1 ≺
t2 ≺ · · · ≺ ti. The multidegree of et1 ∧ et2 ∧ · · · ∧ eti is the least common
multiple of the elements utj/ gcd(utj , up) for j = 1, . . . , i. The shifted complex
T(−multideg(up)) is a multigraded free resolution of (S/L)(−multideg(up)).
Let b(p; t1, . . . , ti) be the basis element of Ti(−multideg(up)) corresponding to
et1 ∧ et2 ∧ · · · ∧ eti . Then

multideg(b(p; t1, . . . , ti)) = multideg(up) + multideg(et1 ∧ et2 ∧ · · · ∧ eti)

= lcm(up, ut1 , . . . , uti).

This resolution is minimal since for any t1 ≺ t2 ≺ · · · ≺ ti we have

lcm(f1, . . . , fi)/lcm(f1, . . . , f̂j , . . . , fi) = Yp\
∧

i
l=1

tl
/Yp\

∧
i
l=1
l 6=j

tl
6= 1.

The monomorphism (S/L)(−multideg(up)) −→ S/HLG
(q) induces a com-

parison map α : T(−multideg(up)) −→ F(q) of multigraded complexes. Let
F(p) be the mapping cone of α. Then F(p) is a multigraded free S-resolution
of HLG

(p) with the desired multigraded basis.
We claim that this resolution is minimal. For any two basis elements b(p;S)

and b(q;T ) with |T | = |S|−1, we show that the coefficient of b(q;T ) in ∂b(p;S)
is either zero or a monomial 6= 1. First assume that p = q. If T ⊆ S, then the
coefficient is multideg(b(p;S))/multideg(b(p, T )) = YA, where A = ∧{r : r ∈
T } \ ∧{r : r ∈ S}. Since A is a nonempty set by Lemma 1.1, then YA 6= 1. If
T * S and multideg(b(p;T )) divides multideg(b(p;S)), then ∧{r : r ∈ S} �
∧{r : r ∈ T }. Therefore ∧{r : r ∈ N(p)} = ∧{r : r ∈ N(p) \ (T \ S)}, which is
a contradiction by Lemma 1.1. Now, assume that q ≺ p. If multideg(b(q;T ))
divides multideg(b(p;S)), then the coefficient is Xp\qYB for some set B ⊆ [n],
and so it is not 1. In the remaining case q 6≺ p, multideg(b(q;T )) does not
divide multideg(b(p;S)). �

2. Some homological invariants of I(G)

Here we apply the results of the first section to compute the homological
invariants of the edge ideal of an unmixed bipartite graph. The next observation
is of crucial importance for understanding the i-extremal and extremal Betti
numbers of HLG

and I(G).

Proposition 2.1. There is a correspondence between the basis elements b(p;S)
and intervals in LG, which are isomorphic to a Boolean lattice.

Proof. For any basis element b(p;S), we show that the interval [∧{q : q ∈ S}, p]
is isomorphic to B|S|. Let S = {q1, . . . , qn} and vi = ∧{q : q ∈ S \ {qi}}.
The interval [∧{q : q ∈ S}, p] is a Boolean lattice on v1, . . . , vn. For any
I ∈ [∧{q : q ∈ S}, p], let i1, . . . , ik be the indices such that I ≤ qij , 1 ≤ j ≤ k.
Then I � ∧{qij : 1 ≤ j ≤ k}. If I 6= ∧{qij : 1 ≤ j ≤ k}, then there exists an



RESOLUTION OF UNMIXED BIPARTITE GRAPHS 981

x ∈ ∧{qij : 1 ≤ j ≤ k} \ I. Since ∧{q : q ∈ S} � I, there exists 1 ≤ l ≤ n,
l 6= i1, . . . , ik such that x /∈ ql. But then x /∈ I ∨ ql = p, a contradiction. Thus
I = ∧{qij : 1 ≤ j ≤ k} = ∨{vj : 1 ≤ j ≤ n, j 6= i1, . . . , ik}.

Let N be a function from the set of basis elements to intervals in LG, which
are isomorphic to a Boolean lattice such that N(b(p;S)) = [∧{q : q ∈ S}, p].
From Lemma 1.1 we know that N is a monomorphism. For any interval [J, I]
in LG isomorphic to a Boolean lattice, set S = N(I) ∩ [J, I]. Then [J, I] =
[∧{q : q ∈ S}, I] and N is surjective. �

In the following we denote by AG the set of elements p ∈ LG such that the
interval [∧{r : r ∈ N(p)}, p] is isomorphic to a maximal Boolean lattice in LG.
By a maximal Boolean lattice we mean a Boolean lattice in LG which is not a
sublattice of another Boolean lattice in LG.

Lemma 2.2. Let p ∈ AG and q ∈ LG. If [∧{r : r ∈ N(q)}, q] ⊆ [∧{r : r ∈
N(p)}, p], then we have

|q| − |N(q)| − | ∧ {r : r ∈ N(q)}| ≤ |p| − |N(p)| − | ∧ {r : r ∈ N(p)}|.

Proof. Let [∧{r : r ∈ N(p)}, p] be a Boolean lattice on the elements v1, . . . , vn.
Then |N(p)| = n, |N(q)| ≤ n and vi∧vj = ∧{r : r ∈ N(p)} for any 1 ≤ i < j ≤
n. Also v1∨· · ·∨vn = p. Without loss of generality assume that q = v1∨· · ·∨vm
for some m < n. Then |N(q)| = m. We claim for every 1 ≤ i ≤ n, there exists
an element xi ∈ vi such that xi is not in any other vj , 1 ≤ j ≤ n. Otherwise let
1 ≤ i ≤ n be such that for any x ∈ vi, there exists j 6= i with x ∈ vj . This means
that vi ≤ ∧{r : r ∈ N(p)} which is a contradiction. Thus |p| − |q| ≥ n − m.
Since | ∧ {r : r ∈ N(p)}| ≤ | ∧ {r : r ∈ N(q)}|, we get the inequality. �

As a first corollary we obtain:

Corollary 2.3. Let G be an unmixed bipartite graph on (X,Y ) such that |X | =
|Y | = n and AG ⊆ LG be the set defined above. Then

(i) depth(R/I(G)) = n−maxp∈AG
{|p| − |N(p)| − | ∧ {r : r ∈ N(p)}|};

(ii) reg(R/I(G)) = maxp∈LG
|N(p)|.

Proof. For any basis element b(p;S) in F|S|, multideg(b(p;S))=XpY[n]\∧{r:r∈S}

and so deg(b(p;S)) = |p|+ n− | ∧ {r : r ∈ S}|. For S ⊆ N(p) from Lemma 1.1
we deduce that |N(p)| − |S| ≤ | ∧ {r : r ∈ S}| − | ∧ {r : r ∈ N(p)}| and then
| ∧ {r : r ∈ N(p)}|+ |N(p)| ≤ | ∧ {r : r ∈ S}|+ |S|. Therefore by Lemma 2.2

reg (HLG
) = n+maxp∈AG

{|p| − |N(p)| − | ∧ {r : r ∈ N(p)}|}.

Since reg(HLG
) = pd(R/I(G)), from the Auslander-Buchsbaum formula one

has (i). The other statement is clear from Theorem 1.2 and using the equality
reg(R/I(G)) = pd(HLG

) (see [14, Theorem 2.1]). �

In a connected graph G, two edges {i, j} and {k, ℓ} are called 3-disjoint if
the induced subgraph on the vertices i, j, k, ℓ consists of exactly two disjoint
edges.
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Corollary 2.4. Let G be an unmixed bipartite graph on (X,Y ) such that |X | =
|Y | = n. Then reg(R/I(G)) = a(G), where a(G) is the maximum number of

pairwise 3-disjoint edges in G.

Proof. By [10, Lemma 2.2] we have that reg(R/I(G)) ≥ a(G) and by Corollary
2.3 we have reg(R/I(G)) = maxp∈LG

|N(p)|. So it is enough to show that
|N(p)| ≤ a(G) for any p ∈ LG. Let p ∈ LG. As we show in the proof of
Proposition 2.1 the interval [∧{q : q ∈ N(p)}, p] is isomorphic to B|N(p)|. Let
[∧{q : q ∈ N(p)}, p] be a Boolean lattice on the elements v1, . . . , v|N(p)| and
pi = v1 ∨ · · · ∨ vi−1 ∨ vi+1 ∨ · · · ∨ v|N(p)| for any 1 ≤ i ≤ |N(p)|. By the same
argument given in the proof of Lemma 2.2, for any 1 ≤ i ≤ |N(p)| there exists
an element xi ∈ vi such that xi is not in any other vj with 1 ≤ j ≤ |N(p)|. We
claim that the set A = {{xi, yi} : 1 ≤ i ≤ |N(p)|} is a set of pairwise 3-disjoint
edges in G. For any distinct pair of edges {xi, yi} and {xj , yj} in A, it is enough
to show that {xi, yj} and {xj , yi} are not edges in G. Since pi, pj ∈ LG, there
are minimal vertex covers Ci and Cj of G, with pi = Ci ∩ {x1, . . . , xn} and
pj = Cj ∩ {x1, . . . , xn}. Since xi /∈ pi and xj ∈ pi, then xi, yj /∈ Ci which
shows that {xi, yj} /∈ E(G). Similarly one can see that xj , yi /∈ Cj and then
{xj , yi} /∈ E(G) which completes the proof. �

Recall that a multigraded Betti number βi,b is called i-extremal if βi,c = 0
for all c > b, that is all multigraded entries below b on the i-th column vanish
in the Betti diagram as a Macaulay output [2]. Define βi,b to be extremal if
βj,c = 0 for all j ≥ i, and c > b so |c| − |b| ≥ j − i. In other words, βi,b

corresponds to the top left cornerof a box of zeroes in the multigraded Betti
diagram. A graded Betti number βi,r is called extremal if βj,l = 0 for any
j ≥ i, l > r and l − r ≥ j − i. In other words, βi,r corresponds to the top left
cornerof a box of zeroes in the Betti diagram.

Corollary 2.5. All multigraded Betti numbers in homological degree i are i-
extremal. A multigraded Betti number βi,b of HLG

is extremal if and only if

there exists p ∈ AG such that i = |N(p)| and b = multideg(b(p;N(p))).

Proof. Let b(p;S) and b(p′;S′) be two basis elements of Fi such that
multideg(b(p;S)) divides multideg(b(p′;S′)). Then p ≤ p′, ∧{q : q ∈ S′} ≤
∧{q : q ∈ S} and |S| = |S′| = i. Therefore [∧{q : q ∈ S}, p] ⊆ [∧{q : q ∈
S′}, p′]. Since both intervals are isomorphic to a Boolean lattice of rank i, one
has p = p′ and ∧{q : q ∈ S} = ∧{q : q ∈ S′}. Since S, S′ ⊆ N(p) from Lemma
1.1 we have S = S′. Therefore all multigraded Betti numbers in homological
degree i are i-extremal.

For any basis element b(p;S) we have multideg(b(p;S)) = XpY[n]\∧{q:q∈S}.
Therefore multideg(b(p;S)) divides multideg(b(p;N(p))) and |N(p)| − |S| ≤
| ∧ {q : q ∈ S}| − | ∧ {q : q ∈ N(p)}|. Therefore βi,b is extremal only if
b = multideg(p;N(p)) for some p ∈ LG. Let p and q be two elements of
LG and multideg(b(p;N(p))) divides multideg(b(q;N(q))). Then p ≤ q and
∧{r : r ∈ N(q)} ≤ ∧{r : r ∈ N(p)}. Therefore [∧{r : r ∈ N(p)}, p] ⊆ [∧{r : r ∈
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N(q)}, q]. Then β|N(p)|,b is extremal precisely when b = multideg(b(p;N(p))),
where [∧{q : q ∈ N(p)}, p] is a maximal Boolean sublattice of LG. �

Lemma 2.6. The graded extremal Betti numbers of R/I(G) can be seen from

the lattice LG. Indeed, the Betti number βi,i+j for R/I(G) is extremal if and

only if there exists p ∈ AG with |N(p)| = j and n + |p| − |N(p)| − | ∧ {r : r ∈
N(p)}| = i such that:

(a) For any q ∈ AG with |N(q)| > |N(p)|, one has

|q| − |N(q)| − | ∧ {r : r ∈ N(q)}| < |p| − |N(p)| − | ∧ {r : r ∈ N(p)}|.

(b) For any q ∈ AG with |N(q)| = |N(p)|, one has

|q| − | ∧ {r : r ∈ N(q)}| ≤ |p| − | ∧ {r : r ∈ N(p)}|.

Proof. This statement follows immediately from the definition of graded ex-
tremal Betti numbers by using [1, Theorem 2.8]. �

Example 2.7. Let G be the following unmixed bipartite graph on the vertex
set X = {x1, . . . , x5} and Y = {y1, . . . , y5} with the edge ideal

I(G) = (x1y1, x2y2, x3y3, x4y4, x5y5, x1y2, x1y4, x1y5, x2y4, x2y5, x3y5, x4y5).

y5y4y3y2y1

x5x4x3x2x1

The lattice LG is depicted in the following figure. For any p ∈ LG let

r

r
12345

1234

r124

12

r3 1

r

∅

r

r13

r123

r

❅
❅❅

❅
❅❅

❅
❅❅

�
�

�
�

�
�

�

❅
❅❅

�
�

�
�

�
�

�

f(p) = |p|−|N(p)|−|∧{r : r ∈ N(p)}|. For any p = {i1, . . . , ik} ∈ LG we denote
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p by i1 · · · ik. We have f(p) = 0 for any p ∈ LG. Therefore by Lemma 2.6, the
extremal Betti number of the unmixed bipartite graph corresponding to this
lattice is βi,i+j for i = 5+ f(p) = 5 + 0 = 5 and j = 2 and β5,7 = 3. Also from
Corollary 2.3, we have depth(R/I(G)) = 5 −max{f(p) : p ∈ AG} = 5− 0 = 5
and reg(R/I(G)) = 2. The edges {x3, y3} and {x4, y4} are two pairwise 3-
disjoint edges in G and one can easily see that a(G) = 2 (see Corollary 2.4).

Example 2.8. Consider the unmixed bipartite graph on the vertex set X =
{x1, . . . , x7} and Y = {y1, . . . , y7} with the edge ideal I(G)= (x1y1, x2y2, x3y3,
x4y4, x5y5, x6y6, x7y7, x6y7, x5y7, x4y7, x3y7, x2y7, x1y7, x7y6, x5y6, x4y6,
x3y6, x2y6, x1y6, x3y4, x2y1, x1y2, x1y5, x2y5). The lattice LG is depicted in
the following picture. For any p ∈ LG let f(p) = |p|−|N(p)|−|∧{r : r ∈ N(p)}|.
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For any p = {i1, . . . , ik} ∈ LG we denote p by i1 · · · ik. We have f(p) = 1 for
p = 123, p = 1234 and p = 1234567 and f(p) = 0 for p = 1235 and p = 12345.
Therefore by Lemma 2.6 the extremal Betti number of the unmixed bipartite
graph corresponding to this lattice is βi,i+j for i = 7+f(1234) = 7+f(123) = 8
and j = 2 and β8,10 = 2. Also from Corollary 2.3, we have depth(R/I(G)) = 6
and reg(R/I(G)) = 2.

As a final application we give a lower bound for the last nonzero total Betti
number of an unmixed bipartite graph. To describe the result, we introduce
the set BG ⊆ AG consisting of all elements q such that |q| − |N(q)| − | ∧ {r :
r ∈ N(q)}| = maxp∈AG

{|p| − |N(p)| − | ∧ {r : r ∈ N(p)}|}.
For an R-module M , let t(M) denote the last nonzero total Betti number of

M . Note that t(M) is the Cohen-Macaulay type of M in the Cohen-Macaulay
case. Then we have the following corollary.

Corollary 2.9. Let G be an unmixed bipartite graph. Then t(R/I(G)) ≥ |BG|.

Proof. Let p ∈ BG and r = pd(R/I(G)). Then r = n+ |p| − |N(p)| − | ∧ {r :
r ∈ N(p)}|. Let b = multideg(b(p;N(p))), from [1, Theorem 2.8] we have
βr,b(R/I(G)) = β|N(p)|,b(HLG

) = 1. Therefore T (R/I(G)) ≥ |BG|. �
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We do not know of any example of a monomial ideal I of projective dimension
r for which there exists a nonzero multigraded Betti number βr,b which is not
extremal. If such ideals don’t exist, at least among the edge ideals of unmixed
bipartite graphs, then we would have equality in Corollary 2.9.

In general the multigraded extremal Betti numbers of monomial ideal do not
appear only in the last step of the resolution. However we have

Proposition 2.10. Let R = k[x1, . . . , xn] for a field k and I a monomial

ideal of R such that R/I is a Cohen-Macaulay ring. Then for all multigraded

extremal Betti numbers βi,b(R/I) we have i = pd(R/I).

Proof. Assume that

0 → Fr → · · · → Fi+1 → Fi → · · · → F0 → R/I → 0

is a minimal graded free resolution of R/I, where r = pd(R/I) and ϕ is the
function Fi+1 → Fi in the resolution. Let βi,b(R/I) be a multigraded extremal
Betti number with i < pd(R/I) and e be the basis element in Fi with multi-
degree b. Then for any basis element g of Fi+1 the coefficient of e in ϕ(g) is
zero. Otherwise multideg(e) < multideg(g) and g ∈ Fi+1 but then βi,b is not
extremal, a contradiction. This means that e∗ is a cycle in the resolution

0 → (R/I)∗ → F ∗
0 → · · · → F ∗

i → F ∗
i+1 → · · · → F ∗

r → 0,

where F ∗
i = HomR(Fi, R). Therefore ExtiR(R/I,R) 6= 0. But we know that

ExtjR(R/I,R) = 0 for any j < r, a contradiction. �
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