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STABILITY FOR A VISCOELASTIC PLATE EQUATION

WITH p-LAPLACIAN

Sun Hye Park

Abstract. In this paper, we consider a viscoelastic plate equation with
p-Laplacian

u′′ +∆2u− div(|∇u|p−2∇u) + σ(t)

∫ t

0

g(t − s)∆u(s)ds−∆u′ = 0.

By introducing suitable energy and Lyapunov functionals, we establish a
general decay estimate for the energy, which depends on the behavior of
both σ and g.

1. Introduction

This work is concerned with the asymptotic stability of solutions for a vis-
coelastic plate equation with p-Laplacian of the form

u′′ +∆2u− div(|∇u|p−2∇u)(1.1)

+ σ(t)

∫ t

0

g(t− s)∆u(s)ds−∆u′ = 0 in Ω× (0,∞),

u = ∆u = 0 on Γ× (0,∞),(1.2)

u(0) = u0, u′(0) = u1 in Ω,(1.3)

where Ω is a bounded domain in R
n with smooth boundary Γ, σ and g are real

functions.
This model can be regarded as a fourth order weak viscoelastic plate equation

with a lower order perturbation of p-Laplacian type, and which is related to
one-dimensional nonlinear equation of elastoplastic microstructure flows given
by

(1.4) u′′ + uxxxx − a(u2
x)x = 0.
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As a general form of (1.4), many authors [5, 9, 11, 12] studied the following
equation with appropriate boundary and initial conditions:

(1.5) u′′ + α∆2u− div(γ(|∇u|2)∇u)−∆u′ + h(u′) + g(u) = f(x).

Ma and Soriano [5] proved the global existence and decay of the solutions
when α = h(u′) = 0 and γ(|∇u|2) = |∇u|p−2 in (1.5). Park et al. [9] improved
the results in [5] by generalizing the assumptions on h, that is, the function
h is assumed to be a discontinuous and nonlinear multi-valued function. The
authors in [11, 12] proved the global existence and asymptotic behavior of weak
and strong solutions of (1.5). These works are concerned with exponential
decay rates.

On the other hand, Andrade et al. [1] discussed the energy decay of solu-
tions for problem (1.1)-(1.3) when σ(t) = 1. The interaction of the memory
term with p-Laplacian operator was first considered by them. They showed
the existence of solutions and exponential decay rates of energy of solutions
under the condition g′(t) ≤ −cg(t) for some c > 0. The aim of this work is to
investigate the general decay of solutions for problem (1.1)-(1.3). Concerning
the study of viscoelastic equations with memory, there is a substantial number
of papers (see [2, 3, 4, 6, 8, 10] and references therein). Cavalcanti et al. [2]
proved exponential and polynomial decay for the viscoelastic wave equation
under the usual condition

−c1g(t) ≤ g′(t) ≤ −c2g(t) and 0 ≤ g′′(t) ≤ c3g(t)

for some positive constants c1, c2, c3. Since then, several authors are interested
in weakening the condition of relaxation function g. Messaoudi and Tatar [8]
introduced conditions on g such as g′(t) ≤ −ζgp(t) for 1 ≤ p < 3

2 , and get the
exponential and polynomial decay rates. Moreover, the authors in [4] obtained
general stability for the Timoshenko system under weaker condition on g such
as g′(t) ≤ −ζ(t)g(t).

Recently, Messaoudi [7] considered the viscoelastic equation of the form

u′′ −∆u+ σ(t)

∫ t

0

g(t− s)∆u(s)ds = 0,

and proved a general decay result which depends both on the behavior of σ
and g. Inspired by [1, 7], we investigate the general decay estimate of solutions
for the weak viscoelastic beam equation with p-Lapalcian. The results of this
article extend those of [1] with respect to some aspects.

The plan of this paper is as follows. In Section 2, we give some notations
and material needed for our work. In Section 3, we derive general decay of the
energy of solutions for problem (1.1)-(1.3).

2. Statement of main results

In this section, we present some material needed in the proof of our results.
Throughout this paper, (u, v) =

∫

Ω u(x)v(x)dx. For a Banach space X , || · ||X
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denotes the norm of X . For simplicity, we denote || · ||Lp(Ω) by || · ||p and
|| · ||L2(Ω) by || · ||. Let λ0, λ1 and λ2 be positive constants satisfying

(2.1) λ0||u||
2 ≤ ||∆u||2, λ1||∇u||2 ≤ ||∆u||2, λ2||u||

2 ≤ ||∇u||2.

Now, we give assumptions on the system (1.1)-(1.3).
For n ∈ N, we assume that p satisfies

2 ≤ p ≤
2n− 2

n− 2
if n ≥ 3 or p ≥ 2 if n = 1, 2.

Then, it holds

H2(Ω) ∩H1
0 (Ω) →֒ W

1,2(p−1)
0 (Ω) →֒ H1

0 (Ω) →֒ L2(Ω).

For the relaxation function g and potential σ, as in [7], we assume that g, σ :
R+ → R+ are nonincreasing differentiable functions satisfying

(2.2) g(0) > 0, k :=

∫

∞

0

g(s)ds < ∞,

(2.3) σ(t) > 0,
1

2
−

2σ(t)

λ1

∫ t

0

g(s)ds ≥ l > 0 for t ≥ 0,

and there exist a nonincreasing differentiable function ζ : R+ → R+ with

(2.4) ζ(t) > 0, g′(t) ≤ −ζ(t)g(t), for t ≥ 0, lim
t→∞

−σ′(t)

ζ(t)σ(t)
= 0.

Theorem 2.1. If (u0, u1) ∈ (H2(Ω)∩H1
0 (Ω))×L2(Ω), then problem (1.1)-(1.3)

has a unique weak solution

u ∈ C(0,∞;H2(Ω) ∩H1
0 (Ω)) ∩ C1(0,∞;L2(Ω)).

Moreover, if (u0, u1) ∈ H3
Γ(Ω) × H1

0 (Ω), where H2
Γ(Ω) = {u ∈ H3(Ω) : u =

∆u = 0 on Γ}, then the problem (1.1)-(1.3) has a unique solution u satisfying

u ∈ L∞(0,∞;H3
Γ(Ω)), u′ ∈ L∞(0, T ;H1

0 (Ω)), u′′ ∈ L2(0, T ;H−1(Ω)).

Proof. See Andrade, Jorge Silva and Ma [1]. �

3. General decay of solutions

For simplicity of notations, we shall omit x and t in all functions of x and
t if there is no ambiguity, and c denotes a generic positive constant different
from line to line or even in the same line, and let

g ∗ v =

∫ t

0

g(t− s)v(s)ds,

g�v =

∫ t

0

g(t− s)||v(t) − v(s)||2ds.

We introduce the energy functional E(t) of the problem (1.1)-(1.3) as

E(t) =
1

2
||u′(t)||2 +

1

2
||∆u(t)||2 +

1

p
||∇u(t)||pp,
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and a modified energy by

E(t) =
1

2
||u′(t)||2 +

1

2
||∆u(t)||2 +

1

p
||∇u(t)||pp(3.1)

+
σ(t)

2
g�∇u−

σ(t)

2

(

∫ t

0

g(s)ds
)

||∇u(t)||2.

Remark 3.1. From definitions of E(t) and E(t), it is noted that E(t) ≤ 1
2lE(t)

for all t ≥ 0. Therefore it is enough to obtain the desired decay for the modified
energy E(t).

To demonstrate the stability of the system (1.1)-(1.3), the lemmas below are
essential.

Lemma 3.1. The modified energy E(t) satisfies

E ′(t) = − ||∇u′(t)||2 +
σ(t)

2
g′�∇u−

σ′(t)

2

(

∫ t

0

g(s)ds
)

||∇u(t)||2(3.2)

−
σ(t)

2
g(t)||∇u(t)||2 +

σ′(t)

2
g�∇u.

Proof. Multiplying (1.1) by u′(t), we have

(3.3)
d

dt
E(t) = −||∇u′(t)||2 + σ(t)(g ∗ ∇u,∇u′(t)).

A direct calculation gives

σ(t)(g ∗ ∇u,∇u′)(3.4)

= −
σ(t)

2
g(t)||∇u||2 +

σ(t)

2
g′�∇u−

σ(t)

2

d

dt

(

g�∇u−

∫ t

0

g(s)ds||∇u||2
)

= −
d

dt

(σ(t)

2
g�∇u−

σ(t)

2

∫ t

0

g(s)ds||∇u||2
)

−
σ(t)

2
g(t)||∇u||2

+
σ(t)

2
g′�∇u+

σ′(t)

2
g�∇u−

σ′(t)

2

∫ t

0

g(s)ds||∇u||2.

Applying this to the second term in the right hand side of (3.3), the proof is
completed. �

Remark 3.2. Since −σ′(t)
2

(

∫ t

0 g(s)ds
)

||∇u(t)||2 ≥ 0, E(t) may not be nonin-

creasing.

Now, let us define the perturbed modified energy by

(3.5) L(t) = NE(t) + σ(t)Ψ(t),

where Ψ(t) = (u′(t), u(t)) and N > 0.

Lemma 3.2. There exist c1 > 0 and c2 > 0 such that for appropriately large

N > 0
c1E(t) ≤ L(t) ≤ c2E(t) for all t ≥ 0.
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Proof. Young’s inequality gives that

|Ψ(t)| ≤
1

2
(||u′||2 + ||u||2) ≤ c(||u′||2 + ||∆u||2) ≤ cE(t).

Since σ is non-increasing, we get

|L(t)−NE(t)| ≤ σ(t)|Ψ(t)| ≤ cσ(0)E(t).

Choosing suitably N > 0, we complete the proof. �

Lemma 3.3. There exist positive constants c3, c4 and t0 satisfying

(3.6)
d

dt
L(t) ≤ −c3σ(t)E(t) + c4σ(t)g�∇u for t ≥ t0.

Proof. Using the problem (1.1), we have

Ψ′(t) = ||u′||2 − ||∆u||2 − ||∇u||pp + σ(t)(g ∗ ∇u,∇u)− (∇u,∇u′).

Young’s inequality and (2.1) give that

(g ∗ ∇u,∇u) =

∫ t

0

g(t− s)(∇u(s)−∇u(t),∇u(t))ds+

∫ t

0

g(s)ds||∇u(t)||2

≤ 2

∫ t

0

g(s)ds||∇u||2 +
1

4
g�∇u

≤
2σ(t)

λ1

∫ t

0

g(s)ds||∆u||2 +
1

4
g�∇u,

and

−(∇u,∇u′) ≤
1

2
||∆u||2 +

1

2λ1
||∇u′||2.

Thus, we obtain

Ψ′(t) ≤
( 1

λ2
+

1

2λ1

)

||∇u′(t)||2 −
(1

2
−

2σ(t)

λ1

∫ t

0

g(s)ds
)

||∆u(t)||2(3.7)

− ||∇u(t)||pp +
σ(t)

4
g�∇u.

Combining (3.2), (3.5) and (3.7), we have

d

dt
L(t) = NE ′(t) + σ(t)Ψ′(t) + σ′(t)Ψ(t)

≤ −N ||∇u′||2 −
Nσ′(t)

2

∫ t

0

g(s)ds||∇u||2 + σ(t)
( 1

λ2
+

1

2λ1

)

||∇u′||2

− σ(t)
(1

2
−

2σ(t)

λ1

∫ t

0

g(s)ds
)

||∆u||2 − σ(t)||∇u||pp

+
σ2(t)

4
g�∇u+ σ′(t)(u, u′).
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Using

σ′(t)(u, u′) ≤ −
σ′(t)

2λ0
||∆u||2 −

σ′(t)

2λ2
||∇u′||2,

we get

d

dt
L(t)

≤ −
(

N − σ(t)(
1

λ2
+

1

2λ1
) +

σ′(t)

2λ2

)

||∇u′||2 − σ(t)||∇u||pp +
σ2(t)

4
g�∇u

−
(

σ(t)(
1

2
−

2σ(t)

λ1

∫ t

0

g(s)ds) +
Nσ′(t)

2λ1

∫ t

0

g(s)ds+
σ′(t)

2λ0

)

||∆u||2.

Noting that (2.3) and the relations

σ(t)

σ(0)
≤ 1 and

∫ t

0

g(s)ds ≤ k,

we arrive

d

dt
L(t) ≤ − σ(t)

( N

σ(0)
−
( 1

λ2
+

1

2λ1

)

+
σ′(t)

2λ2σ(t)

)

||∇u′||2 − σ(t)||∇u||pp

+
σ2(t)

4
g�∇u− σ(t)

(

l+
Nkσ′(t)

2λ1σ(t)
+

σ′(t)

2λ0σ(t)

)

||∆u||2.

First, we take N > 0 such that

N

σ(0)
−
( 1

λ2
+

1

2λ1

)

> 0.

Since

lim
t→∞

−σ′(t)

σ(t)
= 0,

we can choose t0 > 0 sufficiently large so that, for t ≥ t0,

N

σ(0)
−
( 1

λ2
+

1

2λ1

)

+
σ′(t)

2λ2σ(t)
> 0

and

l +
Nkσ′(t)

2λ1σ(t)
+

σ′(t)

2λ0σ(t)
> 0.

This completes the proof. �

Our main theorem is the following.

Theorem 3.1. There exist positive constants C0, ω and t1 such that

E(t) ≤ C0e
−ω

∫
t

0
σ(s)ζ(s)ds for t ≥ t1.
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Proof. Multiplying (3.6) by ζ(t), using (2.4) and (3.2), we get

ζ(t)L′(t) ≤ −c3σ(t)ζ(t)E(t) + c4σ(t)ζ(t)g�∇u

≤ −c3σ(t)ζ(t)E(t) − c4σ(t)g
′
�∇u

≤ −c3σ(t)ζ(t)E(t) + c4

(

− 2E ′(t)− σ′(t)

∫ t

0

g(s)ds||∇u(t)||2
)

.

Since ζ is nonincreasing, by (2.1) and (2.2), one sees that

(

ζ(t)L(t) + 2c4E(t)
)

′

≤ −c3σ(t)ζ(t)E(t) −
c4σ

′(t)

λ1

∫ t

0

g(s)ds||∆u(t)||2

≤ −σ(t)ζ(t)
(

c3 +
c4kσ

′(t)

λ1lσ(t)ζ(t)

)

E(t) for t ≥ t0.

Since limt→∞

−σ′(t)
ζ(t)σ(t) = 0, we can choose t1 ≥ t0 such that

(

ζ(t)L(t) + 2c4E(t)
)

′

≤ −
c3σ(t)ζ(t)

2
E(t) for t ≥ t1.

Thus, by letting L(t) = ζ(t)L(t) + 2c4E(t) and c5 = c3
2 , we get

L′(t) ≤ −c5σ(t)ζ(t)E(t) for t ≥ t1.

Since ζ(t) is a nonincreasing positive function, we can easily observe that L(t)
is equivalent to E(t). Subsequently, it follows that

L′(t) ≤ −cσ(t)ζ(t)L(t) for t ≥ t1.

Integrating this over (t1, t), we conclude that

L(t) ≤ L(t1)e
−c

∫
t

t1
σ(s)ζ(s)ds

for all t ≥ t1.

The equivalent relations of L, L, and E yield

E(t) ≤ c6e
−c

∫
t

t1
σ(s)ζ(s)ds

for all t ≥ t1,

for some positive constant c6. By the virtue of the continuity and boundedness
of E(t) in the interval [0, t1], we complete the proof. �
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