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THE ULTIMATE RUIN PROBABILITY OF A DEPENDENT

DELAYED-CLAIM RISK MODEL PERTURBED BY

DIFFUSION WITH CONSTANT FORCE OF INTEREST

Qingwu Gao, Erli Zhang, and Na Jin

Abstract. Recently, Li [12] gave an asymptotic formula for the ulti-
mate ruin probability in a delayed-claim risk model with constant force
of interest and pairwise quasi-asymptotically independent and extended-
regularly-varying-tailed claims. This paper extends Li’s result to the
case in which the risk model is perturbed by diffusion, the claims are
consistently-varying-tailed and the main-claim interarrival times are wide-
ly lower orthant dependent.

1. Introduction

Consider a delayed-claim risk model perturbed by diffusion with constant
force of interest, which involves two kinds of insurance claims, namely the
main claims and the by-claims, such that each main claim may cause a by-
claim occurring after a period of delay. In this model, the main claims {Xi, i ≥
1}, by-claims {Yi, i ≥ 1}, inter-arrival times of main claims {θi, i ≥ 1} are
three sequences of nonnegative and identically distributed, but not necessarily
independent, random variables (r.v.s) with common distributions F , G and K,

respectively. Denote by τi =
∑i

k=1 θk, i ≥ 1, the arrival times of successive
main claims, which constitute a counting process

N(t) = sup{i ≥ 1 : τi ≤ t}, t ≥ 0;

and by {Ti, i ≥ 1} the delay times of by-claims, which are nonnegative (but
possibly degenerated at 0), arbitrarily dependent and identically distributed
r.v.s with common distribution H .

Assume that the total amount of premiums accumulated before time t ≥ 0,
denoted by C(t), is a nonnegative and nondecreasing stochastic process with
C(0) = 0 and C(t) < ∞ almost surely for every 0 ≤ t < ∞; and that the
diffusion process, as a perturbed term, {B(t), t ≥ 0} is a standard Brownian
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motion with volatility parameter σ ≥ 0 and independent of the other sources
of randomness. In practice, the diffusion-perturbed term can be interpreted as
an additional uncertainty of the aggregate claims or the premium income of an
insurance company. Let r > 0 be the constant force of interest and x ≥ 0 be
the insurer’s initial reserve. Then the total reserve up to time t ≥ 0, denoted
by R(t), satisfies

R(t) = xert +

∫ t

0−

er(t−s)dC(s) −

∞∑

i=1

Xie
r(t−τi)1{τi≤t}

−
∞∑

i=1

Yie
r(t−τi−Ti)1{τi+Ti≤t} + σ

∫ t

0−

er(t−s)dB(s),(1.1)

where 1E is the indicator function of an event E. Hence the ultimate ruin
probability is defined by

(1.2) ψr(x) = P (R(t) < 0 for some t ≥ 0) .

It is well-known that the delayed-claim risk model was firstly introduced
by Waters and Papatriandafylou [22] so that the independence assumption
between claim sizes and their inter-arrival times can be relaxed, and since then
it has been extensively investigated by many researchers. See, for example,
Yuen and Guo [26], Xiao and Guo [23], Li and Wu [13], among others. For the
continuous-time counterparts, the readers are referred to Yuen et al. [27], Xie
and Zou [24, 25], Meng and Wang [15], Zou and Xie [28], and references therein.
We notice that all the references above only discussed the case when the claims
are light-tailed and mutually independent. But recently, Li [12] considered
the delayed-claim risk model with heavy-tailed and dependent claims, and an
asymptotic formula for the ultimate ruin probability was reached. So in the
following, we introduce some dependence structures and some classes of heavy-
tailed distributions.

Wang et al. [20] introduced the widely lower orthant dependent (WLOD)
structure. Say that r.v.s {ξi, i ≥ 1} are WLOD, if there exists a sequence
of finite positive numbers {gL(n), n ≥ 1} such that for each n ≥ 1 and all
xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P

(
n⋂

i=1

{
ξi ≤ xi

})
≤ gL(n)

n∏

i=1

P (ξi ≤ xi).

Clearly, if {ξi, i ≥ 1} are WLOD r.v.s, then for each n ≥ 1 and any s > 0,

(1.3) E exp

{
−s

n∑

i=1

ξi

}
≤ gL(n)

n∏

i=1

Ee−sξi .

Also, Chen and Yuen [2] proposed a more general dependence structure be-
low. Say that r.v.s {ξi, i ≥ 1} are pairwise quasi-asymptotically independent
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(PQAI), if for any 1 ≤ i 6= j <∞,

lim
x→∞

P
(
|ξi| ∧ ξj > x | ξi ∨ ξj > x

)
= 0,

where we denote x ∧ y = min{x, y} and x ∨ y = max{x, y}. For further study
on the above dependence structures and their analogues, we refer to Geluk and
Tang [11], Wang and Cheng [21], Liu et al. [14], Gao and Jin [6], Gao and Liu
[8], Gao and Yang [9, 10], Gao et al. [7], Gao and Bao [5], and others.

Henceforth, all limit relationships are for x → ∞ unless mentioned other-
wise. For two positive functions a(·) and b(·), we write a(x) = O(1)b(x) if
lim sup a(x)/b(x) = C < ∞, write a(x) = o(1)b(x) if C = 0, write a(x) . b(x)
or b(x) & a(x) if C ≤ 1, write a(x) ∼ b(x) if a(x) . b(x) and b(x) . a(x), write
a(x) ≍ b(x) if a(x) = O(1)b(x) and b(x) = O(1)a(x).

In the paper, we are concerned with some classes of heavy-tailed distri-
butions, which have no finite exponential moments. Say that a r.v. ξ or
its distribution V belongs to the ERV class of extended-regularly-varying-
tailed distributions if there exist some 0 < α ≤ β < ∞ such that y−β ≤

V ∗(y) ≤ V
∗
(y) ≤ y−α for all y ≥ 1, where V ∗(y) = lim inf V (xy)/V (x) and

V
∗
(y) = lim supV (xy)/V (x); belongs to the consistently-varying-tailed class,

denoted by V ∈ C, if limyց1 V ∗(y) = 1 or limyր1 V
∗
(y) = 1; belongs to the

dominatedly-varying-tailed class, denoted by V ∈ D, if V
∗
(y) < ∞ for all

y > 0; belongs to the long-tailed class, denoted by V ∈ L, if

(1.4) V (x+ y) ∼ V (x) for all y > 0.

In conclusion,

ERV ⊂ C ⊂ L ∩ D.

More details of heavy-tailed distributions and their applications can be found
in Bingham et al. [1] and Embrechts et al. [4].

Recently, Li [12] showed that in the delayed-claim risk model (1.1) with σ = 0
and C(·) a deterministic linear function, if the claim sizes {Xi, Yi, i ≥ 1} are
PQAI, random pairs {(Xi, Yi), i ≥ 1} are identically distributed with marginal
distributions F ∈ ERV and G ∈ ERV , the inter-arrival times of main claims
{θi, i ≥ 1} are independent, and {Xi, Yi, i ≥ 1}, {θi, i ≥ 1} and {Ti, i ≥ 1} are
mutually independent, then

(1.5) ψr(x) ∼

∫ ∞

0−

F (xert)dEN(t) +

∫ ∞

0−

∫ ∞

0−

G(xer(u+t))dH(u)dEN(t).

Motivated by Li’s result in [12], in the paper we further consider the delayed-
claim risk model (1.1) perturbed by diffusion, in which the claim sizes (including
main claims and by-claims) are PQAI and consistently-varying-tailed, the inter-
arrival times of main claims satisfy WLOD structure, and the premium income
follows a general stochastic process. In our main result, we will discuss two
cases, one is that the premium process {C(t), t ≥ 0} is independent of the other
sources of randomness, and the other is that {C(t), t ≥ 0} is not necessarily so.
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In the rest part of this paper, we will present the main result in Section 2,
and prove it in Section 3 after preparing some lemmas.

2. Main result

In this section, we state our main result. For a distribution V and any y > 0,
we set

J+
V = − lim

y→∞
logV ∗(y)/ log y and J−

V = − lim
y→∞

logV
∗
(y)/ log y.

Assume that the total discounted amount of premiums is finite, namely,

(2.1) 0 ≤ C̃ =

∫ ∞

0−

e−rsdC(s) <∞ almost surely.

Our main result is given below.

Theorem 2.1. Consider the delayed-claim risk model (1.1), in which the claim

sizes {Xi, Yi, i ≥ 1} are PQAI r.v.s, random pairs {(Xi, Yi), i ≥ 1} are iden-

tically distributed by marginal distributions F ∈ C and G ∈ C with J−
F > 0

and J−
G > 0, respectively, and {Xi, Yi, i ≥ 1}, {θi, i ≥ 1} and {Ti, i ≥ 1}

are mutually independent. Assume that the inter-arrival times of main claims

{θi, i ≥ 1} are WLOD r.v.s such that

(2.2) lim
n→∞

gL(n)e
−ǫn = 0

holds for every ǫ > 0, depending on F , G, K and H. Then relation (1.5) holds,
if one of the following conditions is true:

1. the premium process {C(t), t ≥ 0} is independent of the other sources of

randomness;
2. the total discounted amount of premiums satisfies

(2.3) P
(
C̃ > x

)
= o(1)

(
F (x) +G(x)

)
.

Remark 2.1. As was pointed out by Tang [16], condition (2.3), which does not
require the independence between the premium process and the other sources
of randomness, allows for a more realistic case that the premium income varies
as a deterministic or stochastic function of the insurer’s current reserve.

3. Proof of Theorem 2.1

Before proving Theorem 2.1, we prepare the following lemmas. The first one
is a direct result of Proposition 2.2.1 of Bingham et al. [1] or Lemma 3.5 of
Tang and Tsitsiashvili [17].

Lemma 3.1. If a distribution V ∈ D with J−
V > 0, then for any 0 < p̂ < J−

V ≤

J+
V < p <∞, there exist some C > 1 and D > 0 such that

(3.1) C−1
(x
y

)p̂
≤
V (y)

V (x)
≤ C

(x
y

)p
for all x ≥ y ≥ D.



THE ULTIMATE RUIN PROBABILITY 899

The second lemma is from Theorem 3.3(iv) of Cline and Samorodnitsky [3]
and Lemma 2.5 of Wang et al. [19].

Lemma 3.2. Let ξ and η be two independent r.v.s, where ξ is distributed by

V , and η is nonnegative, not degenerate at 0 and satisfying Eηp <∞ for some

p > J+
V .

(1) If V ∈ D, then P (ξη > x) ≍ V (x).
(2) If V ∈ C, then the distribution of ξη still belongs to the class C.

The third lemma is a restatement of Theorem 2.1 of Li [12]. Also, see Lemma
3.2 of Gao and Yang [10]. It should be mentioned that the asymptotic formula
in the lemma was first developed by Tang and Tsitsiashvili [18].

Lemma 3.3. If {ξi, 1 ≤ i ≤ n} are n PQAI and real-valued r.v.s with distri-

butions Vi ∈ C, 1 ≤ i ≤ n, respectively, then for any fixed 0 < a ≤ b <∞,

P

(
n∑

i=1

ciξi > x

)
∼

n∑

i=1

V i

( x
ci

)

holds uniformly for all (c1, c2, . . . , cn) ∈ [a, b]n.

The lemma below is due to Lemma 3.1 of Chen and Yuen [2] or Theorem
2.2 of Li [12].

Lemma 3.4. Let {ξi, 1 ≤ i ≤ n} be n PQAI and real-valued r.v.s with distribu-

tions Vi ∈ D, 1 ≤ i ≤ n, respectively, and {ηi, 1 ≤ i ≤ n} be n nonnegative r.v.s,

independent of {ξi, 1 ≤ i ≤ n} and satisfying Eηpi <∞ for some p >
∨n

i=1 J
+
Vi
,

1 ≤ i ≤ n. Then {ξiηi, 1 ≤ i ≤ n} are still PQAI.

Lemma 3.5. If {ξi, ηi, i ≥ 1} are PQAI and real-valued r.v.s with ξi and ηi
distributed by Vi ∈ C and Wi ∈ C, i ≥ 1, respectively, then {ζi = ξi + ηi, i ≥ 1}
are still PQAI r.v.s with distributions Ui ∈ C, i ≥ 1.

Proof. By Theorem 2.5(ii) of Li ([12]), we know that {ζi, i ≥ 1} are PQAI. By
Lemma 3.3, it holds that

U i(x) ∼ V i(x) +W i(x), i ≥ 1

which, along with Vi ∈ C and Wi ∈ C, i ≥ 1, leads to Ui ∈ C, i ≥ 1. �

The last lemma comes from Lemma 3.3 of Gao et al. [7].

Lemma 3.6. Consider the main-claim arrival process {N(t), t ≥ 0} with

WLOD inter-arrival times {θi, i ≥ 1} satisfying (2.2) for every ǫ > 0. Then

for any fixed t > 0 and any p > 0,

E(N(t))p <∞.

Now we proceed to prove Theorem 2.1.
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Proof of Theorem 2.1. By the reserve process (1.1), we get its discounted value
as

R̃(t) = x+

∫ t

0−

e−rsdC(s)−
∞∑

i=1

Xie
−rτi1{τi≤t}(3.2)

−

∞∑

i=1

Yie
−r(τi+Ti)1{τi+Ti≤t} + σ

∫ t

0−

e−rsdB(s), t ≥ 0.

Then by (1.2), it follows that

(3.3) ψr(x) = P
(
R̃(t) < 0 for some t ≥ 0

)
.

Let B̃ = σ supt∈[0,∞] |
∫ t

0− e
−rsdB(s)|. It is well-known that the stochastic

integral
∫ t

0− e
−rsdB(s), 0 < t ≤ ∞, follows a normal distribution with mean 0

and variance
∫ t

0
e−2rsds, then by many classic martingale inequalities, B̃ has

finite moments of arbitrary orders. So if a distribution U ∈ D, then

(3.4) P (B̃ > x) = o(1)U(x).

Clearly, by (3.2) we get

R̃(t) ≥ x−

∞∑

i=1

(
Xi + Yie

−rTi

)
e−rτi − B̃, t ≥ 0,

which, along with (3.3), implies that

ψr(x) ≤ P

(
∞∑

i=1

(
Xi + Yie

−rTi

)
e−rτi + B̃ > x

)
.(3.5)

On the other hand, again by (3.2) we have

R̃(t) ≤ x+ C̃ −Dr(t) + B̃, t ≥ 0,

where Dr(t) =
∑∞

i=1Xie
−rτi1{τi≤t} +

∑∞
i=1 Yie

−r(τi+Ti)1{τi+Ti≤t}, and C̃ is
defined in (2.1). Hence by (3.3), we derive that

ψr(x) ≥ P
(
Dr(t)− B̃ > x+ C̃ for some t ≥ 0

)
(3.6)

= P




⋃

t≥0

{
Dr(t)− B̃ > x+ C̃

}




≥ P
(
Dr(∞)− B̃ > x+ C̃

)

= P

(
∞∑

i=1

(
Xi + Yie

−rTi

)
e−rτi − B̃ > x+ C̃

)
.

Firstly, we deal with the asymptotic upper-bound of ψr(x). By Lemmas
3.2(2) and 3.4, one can easily see that the common distribution of Yie

−rTi ,
i ≥ 1, belongs to the class C, and {Xi, Yie

−rTi , i ≥ 1} are PQAI. Then by
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Lemma 3.5, we know that Xi + Yie
−rTi , i ≥ 1, are also PQAI and identically

distributed by U ∈ C. So, following the proof of Lemma 3.5 of Gao and Liu [8]
or going along the similar lines of the proof of Lemma 3.5 of Gao and Jin [6],
there exists a positive integer n0 such that for any 0 < v < 1,

P

(
∞∑

i=n0+1

(
Xi + Yie

−rTi

)
e−rτi >

vx

2

)
(3.7)

= o(1)P
((
X1 + Y1e

−rT1
)
e−rτ1 > x

)
.

Note that the common distribution of Xi + Yie
−rTi , i ≥ 1, belongs to C, then

again by Lemma 3.2(2), the distributions of (Xi + Yie
−rTi)e−rτi, i ≥ 1, also

belong to C. Hence for any given ε > 0, there exists a number v0, 0 < v0 < 1,
such that for all large x,

n0∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > (1− v0)x

)
(3.8)

≤ (1 + ε)

n0∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > x

)
.

Let n0 and v0 be fixed as above. By (3.5), we have

ψr(x) ≤ P

(
n0∑

i=1

(
Xi + Yie

−rTi

)
e−rτi > (1− v0)x

)
(3.9)

+ P

(
∞∑

i=n0+1

(
Xi + Yie

−rTi

)
e−rτi >

v0x

2

)
+ P

(
B̃ >

v0x

2

)

=
3∑

i=1

Hi.

For H1, by Theorem 3.2 of Chen and Yuen [2] and (3.8), we show that for all
large x,

H1 ∼

n0∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > (1− v0)x

)

≤ (1 + ε)

n0∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > x

)
.

For H2, by (3.7) with v = v0, we get

H2 = o(1)P
((
X1 + Y1e

−rT1
)
e−rτ1 > x

)
.

For H3, by (3.4), U ∈ C ⊂ D and Lemma 3.2(1), we obtain

H3 = o(1)
((
X1 + Y1e

−rT1
)
e−rτ1 > x

)
.
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Therefore, substituting the derivations for Hi, i = 1, 2, 3, into (3.9) and con-
sidering the arbitrariness of ε > 0 can imply that

ψr(x) .
∞∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > x

)

∼

∫ ∞

0−

F (xert)dEN(t) +

∫ ∞

0−

∫ ∞

0−

G(xer(u+t))dH(u)dEN(t),(3.10)

where in the second step we used Lemma 3.3.
Subsequently, we turn to the asymptotic lower-bound of ψr(x). As men-

tioned above, Xi + Yie
−rTi , i ≥ 1, are identically distributed by U ∈ C ⊂ D.

Thus by (3.1), it holds that for all x ≥ D and any 0 < t <∞,
(3.11)∫∞

t
U(xers)dEN(s)∫∞

0−
U(xers)dEN(s)

=

∫∞

t
U(xers)/U(x)dEN(s)∫∞

0−
U(xers)/U(x)dEN(s)

≤ C2

∫∞

t
e−rp̂sdEN(s)∫∞

0−
e−rpsdEN(s)

.

By (1.3), we get
∫ ∞

0−

e−rpsdEN(s) =

∞∑

n=1

E(e−rpτn) ≤

∞∑

n=1

gL(n)(Ee
−rpθ1)n.

Take ǫ = − log(Ee−rpθ1)−c for some c > 0 in (2.2), then there exists a positive
integer n1 such that for all n ≥ n1,

gL(n) ≤ e−cn exp{−n log(Ee−rpθ1)}.

Thus, we have
∫ ∞

0−

e−rpsdEN(s) ≤

n1−1∑

n=1

gL(n)
(
Ee−rpθ1

)n
+

∞∑

n=n1

e−cn <∞.

Similarly, ∫ ∞

0−

e−rp̂sdEN(s) <∞.

Hence, the third item of (3.11) tends to 0 as t→ ∞, which yields that for any
given ε > 0, there exists a number t0, 0 < t0 <∞, such that for all x ≥ D,

(3.12)

∫ ∞

t0

U(xert)dEN(t) ≤ ε

∫ ∞

0−

U(xert)dEN(t).

Write D̃r(t0) =
∑∞

i=1(Xi+Yie
−rTi)e−rτi1{τi≤t0}, where t0 is fixed as above.

Now we estimate the asymptotic lower-bound of P (D̃r(t0) > x), which will be
used in the proof below. For an arbitrarily fixed integer m, we derive from
Lemma 3.3 that

P (D̃r(t0) > x)(3.13)

≥

m∑

n=1

P

(
n∑

i=1

(
Xi + Yie

−rTi

)
e−rτi > x,N(t0) = n

)
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=

m∑

n=1

∫

{0<t1≤t2≤···≤tn≤t0, tn+1>t0}

P

(
n∑

i=1

(
Xi + Yie

−rTi

)
e−rti > x

)

dG(t1, t2, . . . , tn+1)

∼

(
∞∑

n=1

−

∞∑

n=m+1

)
n∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi > x,N(t0) = n

)

=

∞∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi1{τi≤t0} > x

)
−H4,

where G(t1, t2, . . . , tn+1) is the joint distribution of (τ1, τ2, . . . , τn+1), 1 ≤ n ≤
m. For H4, it follows from Lemma 3.6 that

H4 ≤ U(x)

∞∑

n=m+1

nP (N(t0) = n)

= U(x)EN(t0)1{N(t0)>m} = o(1)U(x) as m→ ∞,

which, along with U ∈ C ⊂ D and Lemma 3.2(1), yields that

(3.14) H4 = o(1)P
((
X1 + Y1e

−rT1
)
e−rτ11{τ1≤t0} > x

)
.

So, we substitute (3.14) into (3.13) to obtain that

P
(
D̃r(t0) > x

)
&

∞∑

i=1

P
((
Xi + Yie

−rTi

)
e−rτi1{τi≤t0} > x

)

=

∫ t0

0−

U(xert)dEN(t).(3.15)

Under condition 1 of Theorem 2.1, we show from (3.6) and (3.15) that for
all large x ≥ D,

ψr(x)(3.16)

≥ P
(
D̃r(t0) > x+ C̃ + B̃

)

&

∫ ∞

0−

∫ t0

0−

U((x + y)ert)dEN(t)P
(
C̃ + B̃ ∈ dy

)

∼

∫ t0

0−

U(xert)dEN(t)

=

(∫ ∞

0−

−

∫ ∞

t0

)
U(xert)dEN(t)

≥ (1− ε)

(∫ ∞

0−

F (xert)dEN(t) +

∫ ∞

0−

∫ ∞

0−

G(xer(u+t))dH(u)dEN(t)

)
,

where the third step is due to U ∈ C ⊂ L and the local uniformity of (1.4), and
the last step is due to (3.12) and Lemma 3.3. Therefore, by (3.10), (3.16) and
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the arbitrariness of ε > 0, we obtain that relation (1.5) holds under condition
1 of this theorem.

Under condition 2 of Theorem 2.1, we know from U ∈ C that for the given
ε > 0, there exists a number δ0 > 0 such that for all large x,

(3.17) U((1 + δ0)x) ≥ (1− ε)U(x).

By (3.6), we see that for δ0 > 0 as above,

(3.18) ψr(x) ≥ P
(
D̃r(t0)− B̃ > (1 + δ0)x

)
− P

(
C̃ > δ0x

)
= H5 −H6.

For H5, arguing as (3.16) and using (3.17) leads to that for all large x,

H5 &

∫ t0

0−

U((1 + δ0)xe
rt)dEN(t)

(3.19)

≥ (1− ε)

(∫ ∞

0−

−

∫ ∞

t0

)
U(xert)dEN(t)

≥ (1− ε)2
(∫ ∞

0−

F (xert)dEN(t) +

∫ ∞

0−

∫ ∞

0−

G(xer(u+t))dH(u)dEN(t)

)
,

where the last step is due to (3.12) and Lemma 3.3. For H6, by (2.3), F ∈ C ⊂
D, G ∈ C ⊂ D and Lemma 3.2(1), we have

H6 = o(1)
(
F (x) +G(x)

)
(3.20)

= o(1)
(
P (X1e

−rτ1 > x) + P (Y1e
−r(τ1+T1) > x)

)

= o(1)

∞∑

i=1

(
P (Xie

−rτi > x) + P (Yie
−r(τi+Ti) > x)

)

= o(1)

(∫ ∞

0−

F (xert)dEN(t) +

∫ ∞

0−

∫ ∞

0−

G(xer(u+t))dH(u)dEN(t)

)
.

Consequently, by (3.10), (3.18)-(3.20) and the arbitrariness of ε > 0, we arrive
at relation (1.5) under condition 2 of the theorem, and hence the proof is
completed. �
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