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EXPANDING THE APPLICABILITY OF SECANT METHOD

WITH APPLICATIONS

Á. Alberto Magreñán and Ioannis K. Argyros

Abstract. We present new sufficient convergence criteria for the con-
vergence of the secant-method to a locally unique solution of a nonlinear
equation in a Banach space. Our idea uses Lipschitz and center–Lipschitz
instead of just Lipschitz conditions in the convergence analysis. The new
convergence criteria can always be weaker than the corresponding ones
in earlier studies. Numerical examples are also provided in this study to
solve equations in cases not possible before.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x⋆ of equation

(1.1) F (x) = 0,

where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

A vast number of problems from applied science including engineering can
be solved by means of finding the solutions equations in a form like (1.1) us-
ing mathematical modelling [7, 11, 16, 19]. For example, dynamic systems are
mathematically modeled by difference or differential equations, and their so-
lutions usually represent the states of the systems. Except in special cases,
the solutions of these equations cannot be found in closed form. This is the
main reason why the most commonly used solution methods are iterative. It-
eration methods are also applied for solving optimization problems. In such
cases, the iteration sequences converge to an optimal solution of the problem
at hand. Since all of these methods have the same recursive structure, they can
be introduced and discussed in a general framework. The convergence analy-
sis of iterative methods is usually divided into two categories: semilocal and
local convergence analysis. In the semilocal convergence analysis one derives
convergence criteria from the information around an initial point whereas in
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the local analysis one finds estimates of the radii of convergence balls from the
information around a solution.

We consider the secant method in the form

(1.2) xn+1 = xn − δF (xn−1, xn)
−1F (xn) (n ≥ 0), (x−1, x0 ∈ D)

where δF (x, y) ∈ L(X ,Y) (x, y ∈ D) the space of bounded linear operators
from X into Y of the Fréchet–derivative of F [16, 19].

The semilocal convergence matter is, based on the information around an
initial point, to give criteria ensuring the convergence of iteration procedures. A
very important problem in the study of iterative procedures is the convergence
domain. In general the convergence domain is small. Therefore, it is important
to enlarge the convergence domain without additional hypotheses. Another
important problem is to find more precise error estimates on the distances
‖xn+1 − xn‖, ‖xn − x⋆‖. These are our objectives in this paper.

The secant method, also known under the name of Regula Falsi or the
method of chords, is one of the most used iterative procedures for solving
nonlinear equations. According to A. N. Ostrowski [20], this method is known
from the time of early Italian algebraists. In the case of equations defined on
the real line, the secant method is better than Newton’s method from the point
of view of the efficiency index [7]. The secant method was extended for the
solution of nonlinear equations in Banach Spaces by A. S. Sergeev [25] and
J. W. Schmidt [24].

The simplified secant method

xn+1 = xn − δF (x−1, x0)
−1F (xn) (n ≥ 0), (x−1, x0 ∈ D)

was first studied by S. Ulm [26]. The first semilocal convergence analysis was
given by P. Laasonen [22]. His results was improved by F. A. Potra and V. Pták
[21–23]. A semilocal convergence analysis for general secant-type methods was
given in general by J. E. Dennis [15]. Bosarge and Falb [10], Dennis [11],
Potra [21–23], Argyros [5–9], Hernández et al. [15] and others [14], [19], [27],
have provided sufficient convergence conditions for the secant method based on
Lipschitz–type conditions on δF .

The conditions usually associated with the semilocal convergence of secant
method (1.2) are:

• F is a nonlinear operator defined on a convex subset D of a Banach
space X with values in a Banach space Y;

• x−1 and x0 are two points belonging to the interior D0 of D and satis-
fying the inequality

‖ x0 − x−1 ‖≤ c;

• F is Fréchet–differentiable onD0, and there exists an operator δF : D0×
D0 → L(X ,Y) such that:
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the linear operator A = δF (x−1, x0) is invertible, its inverse A−1 is
bounded, and:

‖ A−1F (x0) ‖≤ η;

‖ A[δF (x, y) − F ′(z)] ‖≤ ℓ(‖ x− z ‖ + ‖ y − z ‖);
for all x, y, z ∈ D;

(1.3) ℓc+ 2
√

ℓη ≤ 1.

The sufficient convergence condition (1.3) is easily violated (see the Numer-
ical Examples). Hence, there is no guarantee in these cases that equation (1.1)
under the information (ℓ, c, η) has a solution that can be found using secant
method (1.2). In this study we are motivated by optimization considerations,
and the above observation.

The use of Lipschitz and center–Lipschitz conditions is one way used to en-
large the convergence domain of different methods. This technique consists of
using both conditions together instead of using only the Lipschitz one which
allows us to find a finer majorizing sequence, that is, a larger convergence do-
main. It has been used in order to find weaker convergence criteria for Newton’s
method by Argyros in [8]. Gutiérrez et al. in [13] give sufficient conditions for
Newton’s method using both Lipschitz and center-Lipschitz conditions, Ma-
greñán in [18] for the damped Newton’s methods and Amat et al. in [2, 4] or
Garćıa-Olivo [12] for other methods.

Here using Lipschitz and center–Lipschitz conditions, we provide a new
semilocal convergence analysis for (1.2). It turns out that our new conver-
gence criteria can always be weaker than the old ones given in earlier studies
such as [1, 14, 17, 19, 21–24, 27, 28]. The paper is organized as follows: The
semilocal convergence analysis of the secant method is presented in Section 2.
Numerical examples are provided in Section 3.

2. Semilocal convergence analysis of the secant method

In this Section, we present the semilocal convergence analysis of the secant-
method (1.2). First, we present two auxiliary results concerning convergence
criteria and majorizing sequences.

Lemma 2.1. Let ℓ0 > 0, ℓ > 0, c > 0 and η > 0 be constants with ℓ0 ≤ ℓ.
Then, the following items hold

(i)

(2.1) 0 < ℓ(c+η)
1−ℓ0(c+η) ≤ 2ℓ

ℓ+
√
ℓ2+4ℓ0ℓ

< 1−ℓ0(c+η)
1−ℓ0c

⇔ c+ η ≤ 4ℓ2

(ℓ+
√
ℓ2+4ℓ0ℓ)

2 ;

(ii)

(2.2) ℓc ≤
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

⇔ (1− ℓc)2

4
≤ b2 − ℓc;



868 Á. ALBERTO MAGREÑÁN AND IOANNIS K. ARGYROS

(iii)

(2.3) ℓc ≥
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

⇔ (1− ℓc)2

4
≥ b2 − ℓc;

(iv)

(2.4) ℓc ≤
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

and ℓc+
√

ℓη ≤ 1 ⇒ c+ η ≤ 4ℓ

(ℓ+
√
ℓ2+4ℓ0ℓ)

2 c;

(v)

(2.5) ℓc ≥
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

and c+ η ≤ 4ℓ

(ℓ+
√
ℓ2+4ℓ0ℓ)

2 ⇒ ℓc+
√

ℓη ≤ 1.

Proof. Let x = 1 − ℓc, y = ℓη, a = ℓ0
ℓ

and b = 2
1+

√
1+4a

. Then, we have that

ab2 + b− 1 = 0 and ab+ 1 = 1
b
.

(i) The triple inequality in (2.1) holds, if

(2.6)
ℓc+ ℓη

1− aℓ(c+ η)
≤ 2ℓ

ℓ+
√
ℓ2 + 4aℓ2

= b,

(2.7) b <
1− aℓ(c+ η)

1− aℓc

and

(2.8) ℓ(c+ η) <
1

a
or, if

(2.9) y ≤ b2 − (1− x),

(2.10) y <
1− b

a
− (1− b)(1 − x) = b2 − (1 − b)(1− x),

and

(2.11) y ≤ 1

a
− (1− x),

respectively. We have that ab2 = 1 − b < 1 by the definition of a and b. It
follows that

(2.12) b2 − (1 − x) <
1

a
− (1 − x)

and from (1− b)(1− x) < (1 − x) we get that

(2.13) b2 − (1− x) < b2 − (1− b)(1− x).

Hence, it follows from (2.12) and (2.13) that (2.6)–(2.8) are satisfied if (2.9)
holds. But (2.9) is equivalent to the right hand side inequality in (2.1). Con-
versely, if the right hand side inequality in (2.1) holds, then (2.9), (2.12) and
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(2.13) imply (2.10) and (2.11) imply (2.6)–(2.8) which imply the triple inequal-
ity in (2.1).

(ii)

ℓc ≤
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

⇔ 2(1− b) < x < 2(1 + b) ⇔ x2 − 4x+ 4(1− b2) ≤ 0

⇔ x2

4 ≤ b2 − (1− x) ⇔ (ℓη)2

4
≤ b2 − ℓc.

(iii)

(ℓη)2

4 ≥ b2 − ℓc ⇔ x2

4 ≥ b2 − (1− x) ⇔ x2 − 4x+ 4(1− b2) ≥ 0

⇒ x ≤ 2(1− b) ⇔ ℓc ≥
3−

√

1+4
ℓ0
ℓ

1+

√

1+4
ℓ
ℓ0

(since x ≥ 2(1 + b) cannot hold).
(iv) The hypotheses in (2.4) and (2.2) imply ℓη ≤ b2 − ℓc which is

c+ η ≤ 4ℓ
(

ℓ+
√
ℓ2 + 4ℓ0ℓ

)2 .

(v) The hypothesis in (2.5) and (2.3) imply

ℓc+
√

ℓη ≤ 1. �

We need the following result on majorizing sequences for the secant method
(1.2).

Lemma 2.2. Let ℓ0 > 0, ℓ > 0, c > 0, and η > 0 be constants with ℓ0 ≤ ℓ.
Suppose

(2.14) c+ η ≤ 4ℓ2

ℓ+
√
ℓ2 + 4ℓ0ℓ

.

Then, scalar sequence {tn} (n ≥ −1) given by

(2.15) t−1 = 0, t0 = c, t1 = c+ η, tn+2 = tn+1 +
ℓ(tn+1 − tn−1)(tn+1 − tn)

1− ℓ0(tn+1 − t0 + tn)

is increasing, bounded from above by

(2.16) t⋆⋆ =
η

1− b
+ c,

and converges to its unique least upper bound t⋆ such that

(2.17) c+ η ≤ t⋆ ≤ t⋆⋆,

Moreover, the following estimates hold for all n ≥ 0 :

(2.18) 0 ≤ tn+2 − tn+1 ≤ b(tn+1 − tn) ≤ bn+1η,

where b is given in Lemma 2.1.
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Proof. We shall show using induction on k ≥ 0 that

(2.19) 0 ≤ tk+2 − tk+1 ≤ b(tk+1 − tk).

Using (2.15) for k = 0, we must show

0 <
ℓ(t1 − t−1)

1− ℓ0t1
≤ b

or

0 <
ℓ(c+ η)

1− ℓ0(c+ η)
≤ b,

which is true by (2.1) and (2.14). Let assume that (2.19) holds for k ≤ n+ 1.
It then follows from the induction hypotheses that

(2.20)

tk+2 ≤ tk+1 + b(tk+1 − tk)

≤ tk + b(tk − tk−1) + b(tk+1 − tk)

≤ t1 + b(t1 − t0) + · · ·+ b(tk+1 − tk)

≤ c+ η + bη + · · ·+ bk+1η

= c+
1− bk+2

1− b
η <

η

1− b
+ c = t⋆⋆.

Moreover, we can have:
(2.21)

ℓ(tk+2 − tk+1) + bℓ0(tk+2 − t0 + tk+1)

≤ ℓ

(

(tk+2 − tk+1) + (tk+1 − tk)

)

+ bℓ0

(

1− bk+2

1− b
+

1− bk+1

1− b

)

η + bℓ0c

≤ ℓ(bk + bk+1)η +
bℓ0
1− b

(2− bk+1 − bk+2)η + bℓ0c.

In view of (2.21), inequality (2.19) holds, if

(2.22) ℓ(bk + bk+1)η +
bℓ0
1− b

(2 − bk+1 − bk+2)η + bℓ0c ≤ b

or

(2.23) ℓ(bk−1+bk)η+ℓ0

(

(1+b+ · · ·+bk)+(1+b+ · · ·+bk+1)

)

η+ℓ0c−1 ≤ 0.

In view of (2.23), we are motivated to define recurrent functions for k ≥ 1
on [0, 1) by

(2.24) fk(t) = ℓ(tk−1 + tk)η + ℓ0

(

2(1 + t+ · · ·+ tk) + tk+1

)

η + ℓ0c− 1.
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We need the relationship between two consecutive functions fk. Using (2.24),
we obtain
(2.25)

fk+1(t) = ℓ(tk + tk+1)η + ℓ0

(

2(1 + t+ · · ·+ tk+1) + tk+2

)

η + ℓ0c− 1

= ℓ(tk−1 + tk)η + ℓ(tk + tk+1)η − ℓ(tk−1 + tk)η

+ ℓ0

(

2(1 + t+ · · ·+ tk) + tk+1

)

η + ℓ0(2t
k+1 + tk+2)η

− ℓ0t
k+1η + ℓ0c− 1

= fk(t) + ℓ(tk+1 − tk−1)η + ℓ0(t
k+1 + tk+2)η

= p(t)tk−1η + fk(t),

where p(t) = ℓ0t
3 + (ℓ0 + ℓ)t2 − ℓ. Notice that by Descarte’s rule of signs, b is

the only positive root of polynomial p. We can show instead of (2.23)

(2.26) fk(b) ≤ 0, k ≥ 1.

Define functions f∞ on interval [0, 1) by f∞(t) = limk→∞fk(t). Then, in view
of (2.24) we get that

(2.27) f∞(t) =
2ℓ0η

1− t
+ ℓ0c− 1.

We have that fk(b) = fk+1(b) = f∞(b). Hence, we can show instead of (2.26)
that f∞(b) ≤ 0, which is true by (2.1), (2.14) and (2.27). Hence, we showed
sequence {tn} (n ≥ −1) is increasing and bounded from above by t⋆⋆, so that
(2.18) holds. It follows that there exists t⋆ ∈ [c+ η, t⋆⋆], so that limn→∞ tn =
t⋆. �

We denote by U(z, ̺) the open ball centered ar z ∈ X and of radius ̺ > 0.
We also denote by Ū(z, ̺) the closure of U(z, ̺). We shall study the secant
method (1.2) for triplets (F, x−1, x0) belonging to the class C(ℓ, ℓ0, η, c) defined
as follows:

Definition 2.3. Let ℓ, ℓ0, η, c be positive constants satisfying the hypotheses
of Lemma 2.2.

We say that a triplet (F, x−1, x0) belongs to the class C(ℓ, ℓ0, η, c) if:
(c1) F is a nonlinear operator defined on a convex subset D of a Banach

space X with values in a Banach space Y;
(c2) x−1 and x0 are two points belonging to the interior D0 of D and satis-

fying the inequality

‖ x0 − x−1 ‖≤ c;

(c3) F is Fréchet–differentiable onD0, and there exists an operator δF : D0×
D0 → L(X ,Y) such that:
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the linear operator A = δF (x−1, x0) is invertible, its inverse A−1 is
bounded and:

‖ A−1F (x0) ‖ ≤ η;

‖ A[δF (x, y) − F ′(z)] ‖ ≤ ℓ(‖ x− z ‖ + ‖ y − z ‖);
‖ A[δF (x, y)− F ′(x0)] ‖ ≤ ℓ0(‖ x− x0 ‖ + ‖ y − x0 ‖)

for all x, y, z ∈ D.
(c4) the set Dc = {x ∈ D; F is continuous at x} contains the closed ball

U(x0, t
⋆ − t0), where t⋆ is given in Lemma 2.2.

We present the following semilocal convergence theorem for secant method
(1.2).

Theorem 2.4. If (F, x−1, x0) ∈ C(ℓ, ℓ0, η, c), then sequence {xn} (n ≥ −1)
generated by secant method (1.2) is well defined, remains in U(x0, t

⋆ − t0) for

all n ≥ 0 and converges to a unique solution x⋆ ∈ U(x0, t
⋆ − t0) of equation

F (x) = 0. Moreover the following estimates hold for all n ≥ 0

(2.28) ‖ xn+2 − xn+1 ‖≤ tn+2 − tn+1,

and

(2.29) ‖ xn − x⋆ ‖≤ t⋆ − tn,

where the sequence {tn} (n ≥ 0) given by (2.15). Furthermore, if there exists

R ≥ t⋆ − t0, such that

(2.30) ℓ0 (c+
η

1− b
+R) ≤ 1,

and

(2.31) U(x0, R) ⊆ D,

then the solution x⋆ is unique in U(x0, R).

Proof. We first show operator L = δF (u, v) is invertible for u, v ∈ U(x0, t
⋆−t0).

It follows from (2.1), (c2) and (c3) that:

‖ I −A−1L ‖ = ‖ A−1(L−A) ‖(2.32)

≤ ‖ A−1(L− F ′(x0)) ‖ + ‖ A−1(F ′(x0)−A) ‖
≤ ℓ0(‖ u− x0 ‖ + ‖ v − x0 ‖ + ‖ x0 − x−1 ‖)
≤ ℓ0(t

⋆ − t0 + t⋆ − t0 + c)

≤ ℓ0

(

2

(

η

1− b
+ c

)

− c

)

< 1.

According to the Banach Lemma on invertible operators [8], [16], and (2.32),
L is invertible and

(2.33) ‖ L−1A ‖≤
(

1− ℓ0(‖ xk − x0 ‖ + ‖ xk+1 − x0 ‖ +c)

)−1

.
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The second condition in (c3) implies the Lipschitz condition for F ′

(2.34) ‖ A−1(F ′(u)− F ′(v)) ‖≤ 2ℓ ‖ u− v ‖, u, v ∈ D0.

By the identity,

(2.35) F (x) − F (y) =

∫ 1

0

F ′(y + t(x − y))dt(x− y)

we get

(2.36) ‖ A−1
0 [F (x)−F (y)−F ′(u)(x−y)] ‖≤ ℓ(‖ x−u ‖ + ‖ y−u ‖) ‖ x−y ‖

and

‖ A−1
0 [F (x)− F (y)− δF (u, v)(x− y)] ‖(2.37)

≤ ℓ(‖ x− v ‖ + ‖ y − v ‖ + ‖ u− v ‖) ‖ x− y ‖
for all x, y, u, v ∈ D0. By a continuity argument (2.34)–(2.37) remain valid if x
and/or y belong to Dc. We first show (2.28). If (2.28) holds for all n ≤ k and
if {xn} (n ≥ 0) is well defined for n = 0, 1, 2, . . . , k then

(2.38) ‖ x0 − xn ‖≤ tn − t0 < t⋆ − t0, n ≤ k.

That is (1.2) is well defined for n = k + 1. For n = −1, and n = 0, (2.28)
reduces to ‖ x−1 − x0 ‖≤ c, and ‖ x0 − x1 ‖≤ η. Suppose (2.28) holds for
n = −1, 0, 1, . . . , k (k ≥ 0). Using (2.33), (2.37) and

(2.39) F (xk+1) = F (xk+1)− F (xk)− δF (xk−1, xk)(xk+1 − xk)

we obtain in turn:

‖ A−1F (xk+1) ‖ = ℓ(‖ xk+1 − xk ‖ + ‖ xk − xk−1 ‖) ‖ xk+1 − xk ‖(2.40)

= ℓ(tk+1 − tk + tk − tk−1)(tk+1 − tk)

= ℓ(tk+1 − tk−1)(tk+1 − tk)

and

‖ xk+2 − xk+1 ‖ = ‖ δF (xk, xk+1)
−1F (xk+1) ‖(2.41)

≤ ‖ δF (xk, xk+1)
−1A ‖ ‖ A−1F (xk+1) ‖

≤ ℓ(tk+1 − tk + tk − tk−1)

1− ℓ0(tk+1 − t0 + tk − t0 + t0 − t−1)
(tk+1 − tk)

= tk+2 − tk+1.

The induction for (2.28) is completed. It follows from (2.28) and Lemma 2.2
that sequence {xn} (n ≥ −1) is complete in a Banach space X , and as such
it converges to some x⋆ ∈ U(x0, t

⋆ − t0) (since U(x0, t
⋆ − t0) is a closed set).

By letting k → ∞ in (2.41), we obtain F (x⋆) = 0. Estimate (2.29) follows
from (2.28) by using standard majoration techniques [7, 16, 19, 23]. We shall
first show uniqueness in U(x0, t

⋆ − t0). Let y
⋆ ∈ U(x0, t

⋆ − t0) be a solution of
equation (1.1).
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Set

M =

∫ 1

0

F ′(y⋆ + t(y⋆ − x⋆))dt.

It then by (c3):

‖ A−1(A−M) ‖ = ℓ0(‖ y⋆ − x0 ‖ + ‖ x⋆ − x0 ‖ + ‖ x0 − x−1 ‖)(2.42)

≤ ℓ0((t
⋆ − t0) + (t⋆ − t0) + t0)

≤ ℓ0

(

2

(

η

1− b
+ c

)

− c

)

= ℓ0

(

2η

1− b
+ c

)

< 1.

It follows from (2.1), and the Banach lemma on invertible operators that
M−1 exists on U(x0, t

⋆ − t0). Using the identity:

(2.43) F (x⋆)− F (y⋆) = M(x⋆ − y⋆)

we deduce x⋆ = y⋆. Finally, we shall show uniqueness in U(x0, R). As in (2.42),
we arrive at

‖ A−1(A−M) ‖< ℓ0

(

η

1− b
+ c+R

)

≤ 1,

by (2.30). �

Remark 2.5. (a) Let us define the majoring sequence {wn} used in earlier
studies such as [1, 14, 17, 19, 21–24,27, 28] (under condition (1.3)):
(2.44)

w−1 = 0, w0 = c, w1 = c+ η, wn+2 = wn+1 +
ℓ(wn+1 − wn−1)(wn+1 − wn)

1− ℓ(wn+1 − w0 + wn)
.

Note that in general

(2.45) ℓ0 ≤ ℓ

holds, and ℓ
ℓ0

can be arbitrarily large [5–8]. In the case ℓ0 = ℓ, then tn = wn

(n ≥ −1). Otherwise:

(2.46) tn+1 − tn ≤ wn+1 − wn,

(2.47) 0 ≤ t⋆ − tn ≤ w⋆ − wn, w⋆ = lim
n→∞

wn.

Note also that strict inequality holds in (2.46) for n ≥ 1, if ℓ0 < ℓ. It is worth
noticing that the center-Lipschitz condition is not an additional hypothesis to
the Lipschitz condition, since in practice the computation of constant ℓ requires
the computation of ℓ0. It follows from the proof of Theorem 2.4 that sequence
{sn} defined by

s−1 = 0, s0 = c, s1 = c+ η, s2 = s1 +
ℓ0(s1 − s−1)(s1 − s0)

1− ℓ0s1

sn+2 = sn+1 +
ℓ(sn+1 − sn−1)(sn+1 − sn)

1− ℓ0(sn+1 − s0 + sn)
for n = 1, 2, . . . .
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is also a majorizing sequence for {xn} which is tighter than {tn}.
(b) In practice constant c depends on initial guesses x−1 and x0 which can

be chosen to be as close to each other as we wish. Therefore, in particular, we
can always choose

ℓc <
3−

√

1 + 4 ℓ0
ℓ

1 +
√

1 + 4 ℓ0
ℓ

,

which according to (iv) in Lemma 2.1 implies that the new sufficient conver-
gence criterion (2.14) is weaker than the old one given by (1.3).

3. Numerical examples

Example 3.1. Let X = Y = C[0, 1], equipped with the max-norm. Consider
the following nonlinear boundary value problem

{

u′′ = −u3 − γu2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.1) u(s) = s+

∫ 1

0

Q(s, t)(u3(t) + γu2(t))dt,

where Q is the Green function:

Q(s, t) =

{

t(1− s), t ≤ s
s(1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0

|Q(s, t)|dt = 1

8
.

Then problem (3.1) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0

Q(s, t)(x3(t) + γx2(t))dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s)− 3

∫ 1

0

Q(s, t)x2(t)y(t)dt − 2γ

∫ 1

0

Q(s, t)x(t)y(t)dt.

Then, we have that

[(I − F ′(x0))(y)](s) = 3

∫ 1

0

Q(s, t)x2
0(t)y(t)dt+ 2γ

∫ 1

0

Q(s, t)x0(t)y(t)dt.

Hence, if 2γ < 5, then

‖I − F ′(x0)‖ ≤ 2(γ − 2) < 1.

It follows that F ′(x0)
−1 exists and

‖F ′(x0)
−1‖ ≤ 1

5− 2γ
.
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We also have that ‖F (x0)‖ ≤ 1 + γ. Define the divided difference defined by

δF (x, y) =

∫ 1

0

F ′(y + t(x − y))dt.

Choosing x−1(s) such that ‖x−1 − x0‖ ≤ c and k0c < 1. Then, we have

‖δF (x−1, x0)
−1F (x0)‖ ≤ ‖δF (x−1, x0)

−1F ′(x0)‖‖F ′(x0)F (x0)‖
and

‖δF (x−1, x0)
−1F ′(x0)‖ ≤ 1

(1− k0c)
,

where k0 is such that

‖F ′(x0)
−1(F ′(x0)−A0)‖ ≤ k0c.

Set u0(s) = s and D = U(u0, R). It is easy to verify that U(u0, R) ⊂ U(0, R+1)
since ‖ u0 ‖= 1. If 2γ < 5, and k0c < 1 the operator F ′ satisfies conditions of
Theorem 2.6, with

η =
1 + γ

(1− k0c)(5− 2γ)
, l =

γ + 6R+ 3

8(5− 2γ)(1− k0c)
, l0 =

2γ + 3R+ 6

16(5− 2γ)(1− k0c)
.

Choosing R0 = 0.9, γ = 0.5 and c = 1 we obtain that

k0 = 0.1938137822 · · · ,
η = 0.465153 · · · ,
l = 0.344989 · · ·

and
l0 = 0.187999 · · · .

Then, criterion (1.3) is not satisfied since lc + 2
√
lη = 1.14617 · · · > 1, but

criterion (2.14) is satisfied since

η + c = 1.46515 · · · ≤ 4l

(l2 +
√
l2 + 4l0l)2

= 1.49682 · · · .

As a consequence the convergence of the secant-method is guaranteed by The-
orem 2.4.

Example 3.2. Let X = Y = R and let consider the real functions

F (x) = x3 − k,

where k ∈ R and we are going to apply secant-method to find the solution
of F (x) = 0. We take the starting point x0 = 1 we consider the domain
Ω = B(x0, 1) and we let x−1 free in order to find a relation between k and x−1

for which criterion (1.3) is not satisfied but new criterion (2.14) is satisfied. In
this case, we obtain

η = |(1 − k)(1 + x−1 + x2
−1)|,

l =
6

|1 + x−1 + x2
−1|

,
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l0 =
9

2|1 + x−1 + x2
−1|

.

Taking all this data into account we obtain the following criteria:
(i) If 55/54 < k ≤ 25/24 and

α < x−1 ≤ 2− 27k

2(−29 + 27k)
− 1

2

√
3

√

−2164− 3024k + 729k2

(−29 + 27k)2
,

where α is the smallest positive root of

p(t)− 73+24k+(22+48k)t+(−111+72k)t2+(−38+48k)t3+(−25+24k)t4.

(ii) If 25/24 < k < 29/27 and

1 < x1 ≤ 2− 27k

2(−29 + 27k)
− 1

2

√
3

√

−2164− 3024k + 729k2

(−29 + 27k)2
.

(iii) If 55/54 < k < 25/24 and

56− 27k

2(−29 + 27k)
+

1

2

√
3

√

−−968− 108k + 729k2

(−29 + 27k)2
≤ x−1 < α,

where α is the greatest positive root of

p(t) = −49+24k+(22+48k)t+(−111+72k)t2+(−62+48k)t3+(−25+24k)t4.

(iv) If 25/24 ≤ k < 29/27 and

56− 27k

2(−29 + 27k)
+

1

2

√
3

√

−−968− 108k + 729k2

(−29 + 27k)2
≤ x−1 < 1.

(v) If 25/27 < k < 23/24 and

1 ≤ x−1 <
52− 27k

2(−25 + 27k)
− 1

2

√
3

√

−−968 + 108k+ 729k2

(−25 + 27k)2
.

(vi) If 23/24 ≤ k < 53/54 and

α ≤ x−1 <
52− 27k

2(−25 + 27k)
− 1

2

√
3

√

−−968 + 108k+ 729k2

(−25 + 27k)2
,

where α is the smallest positive root of

p(t) = 25+24k+(−118+48k)t+(−33+72k)t2+(−58+48k)t3+(−23+24k)t4.

(vii) If 25/27 < k ≤ 23/24 and

−2− 27k

2(−25 + 27k)
+

1

2

√
3

√

−1732− 2808k+ 729k2

(−25 + 27k)2
≤ x−1 < 1.
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(viii) If 23/24 < k < 53/54 and

−2− 27k

2(−25 + 27k)
+

1

2

√
3

√

−1732− 2808k+ 729k2

(−25 + 27k)2
≤ x−1 < α,

where α is the greatest positive root of

p(t) = 1+24k+(−118+48k)t+(−33+72k)t2+(−34+48k)t3+(−23+24k)t4.

Now we consider a case in which both criteria (1.3) and (2.14) are satisfied
to compare the majorizing sequences. We choose k = 0.99 and x−1 = 1.2 and
we obtain

c = 0.2, η = 0.0364 · · · , l = 1.64835, l0 = 1.23626.

Moreover, criterion (1.3)

lc+ 2
√

lη = 0.819568 < 1,

is satisfied and criterion (2.14)

c+ η = 0.2364 · · · ≤ 0.26963 · · ·= 4l

(l2 +
√
l2 + 4l0l)2

,

is also satisfied. In Table 1 it is shown that {sn}, {tn} and {wn} are majorizing
sequences and it is shown also that the tighter sequence is {sn}.

Table 1. Comparison between the sequences {sn}, {tn} and {wn}

n ‖sn+1 − sn‖ ‖tn+1 − tn‖ ‖wn+1 − wn‖
1 0.0150308 · · · 0.0200411 · · · 0.0232399 · · ·
2 0.00197814 · · · 0.00292257 · · · 0.00446203 · · ·
3 0.0000890021 · · · 0.000181477 · · · 0.000339709 · · ·
4 4.88677× 10−7 1.53289× 10−6 4.52784× 10−6

5 1.16179× 10−10 7.63675× 10−10 4.32958× 10−9

6 1.66533× 10−16 3.16414× 10−15 5.45120× 10−14

Conclusion

We present a new semilocal convergence analysis for the secant method in
order to approximate a locally unique solution of a nonlinear equation in a
Banach space setting. We showed that the new convergence criteria can be
always weaker than the corresponding ones in earlier studies such as [1, 14, 17,
19, 21–24, 27, 28]. Numerical examples where the old results cannot guarantee
the convergence but our new convergence criteria can are also provided in this
study.
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