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VOLUME INEQUALITIES FOR THE Lp-SINE TRANSFORM

OF ISOTROPIC MEASURES

LuJun Guo and Gangsong Leng

Abstract. For p ≥ 1, sharp isoperimetric inequalities for the Lp-sine
transform of isotropic measures are established. The corresponding re-
verse inequalities are obtained in an asymptotically optimal form. As
applications of our main results, we present volume inequalities for con-
vex bodies which are in Lp surface isotropic position.

1. Introduction

The setting for this article is Euclidean n-space R
n with n ≥ 3. We use

| · | to denote the standard Euclidean norm on R
n and we write x · y for the

standard inner product of x, y ∈ R
n.

A non-negative finite Borel measure µ on the unit sphere Sn−1 is said to be
isotropic if it has the same moment of inertia about all lines through the origin
or, equivalently, if for all x ∈ R

n,

|x|2 =

∫

Sn−1

|x · u|2dµ(u).

Two basic examples of isotropic measures on Sn−1 are (suitably normalized)
spherical Lebesgue measure and the cross measures, i.e., measures concentrated
uniformly on {±b1, . . . ,±bn}, where b1, . . . , bn denote orthonormal basis vectors
of Rn. Isotropic measures have been the focus of recent studies, in particular,
in relation with a variety of extremal problems for convex bodies (see, e.g.,
[8, 9, 16, 20, 29, 43, 45] and the references therein).

A measure on Sn−1 is said to be even if it assumes the same value on
antipodal sets. Each even isotropic Borel measure µ on Sn−1 determines an
n-dimensional subspace of Lp whose unit ball we denote by Z∗

p = Z∗
p (µ). To
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be specific, the n-dimensional subspace of Lp = Lp(S
n−1) may be taken to be

R
n with a norm defined, for each x ∈ R

n, by

‖x‖Z∗
p
=

(

∫

Sn−1

|x · v|pdµ(v)
)

1

p

.

Conversely, a theorem of Lewis [22] shows that each n-dimensional subspace
of Lp is isometric to a Banach space with such a representation for some even
isotropic Borel measure µ (see, e.g. [29] for details).

Volume inequalities for the body Z∗
p = Z∗

p (µ) or its polar, Zp = Zp(µ), that
characterize the Euclidean subspaces of Lp, are easily obtained by using well-
known standard inequalities (such as the Urysohn and Hölder inequalities).
Much more difficult to obtain are the reverse inequalities for Z∗

p or Zp. These
have the lnp subspaces of Lp as extremals.

In 1991 Ball [2] used his normalized Brascamp-Lieb inequality to obtain
the sharp reverse inequality for the volume of Z∗

p , for all p ∈ [0,∞]. Ball’s
inequality shows that the unit ball of lnp is extremal. The solution to the
uniqueness problem for Ball’s reverse inequality was obtained later by Barthe
[3] for discrete measures by using his newly established equality conditions for
the Brascamp-Lieb inequality. Barthe proved that indeed the unit ball of lnp is
the only extremal for Ball’s inequality when µ is a discrete isotropic measure.

The reverse inequalities for the volume of Zp would prove to be more resis-
tant. Ball [1] established the reverse inequality for the volume of Zp for the case
p = 1 and predicted that for p > 1 these inequalities could be obtained from
a reverse Brascamp-Lieb inequality. Again, the breakthrough was achieved by
Barthe [3]. Barthe found the reverse Brascamp-Lieb inequality anticipated by
Ball and used it to establish the reverse inequalities for the volume of Zp for
all p > 1. Barthe also established the uniqueness of the extremals when µ is a
discrete measure.

The problem of establishing Ball’s inequalities, along with their equality
conditions, for isotropic measures which are not necessarily discrete was solved
in 2004 by E. Lutwak, D. Yang and G. Zhang [28]. All their inequalities
were obtained along with their equality conditions and that was done for all
p ∈ [1,∞] and all even isotropic measures µ.

For p ∈ [1,∞], let p∗ ∈ [1,∞] denote the Hölder conjugate of p; i.e., p∗ is
defined by 1

p
+ 1

p∗ = 1. For n, p ∈ (0,∞), let

κn(p) = 2n
Γ(1 + 1

p
)n

Γ(1 + n
p
)
.

Let κn(∞) = 2n, and abbreviate κn(2) by κn and note that for positive integer
n, the unit ball of R

n has precisely volume κn. Let Γ denote the Gamma
function and, for p ∈ (0,∞), define cp by

cp =
(Γ(1 + n

2 )Γ(
1+p
2 )

Γ(1 + 1
2 )Γ(

n+p
2 )

)
n
p

,
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and define c∞ = limp→∞ cp = 1.
The following two theorems were obtained by E. Lutwak, D. Yang and G.

Zhang in [28].

Theorem A ([28]). Suppose p ∈ [1,∞]. If µ is an even isotropic measure on

Sn−1, then
κn

cp
≤ V (Z∗

p ) ≤ κn(p).

If p ∈ [1,∞) is not an even integer, then there is equality in the left inequality

if and only if µ is suitably normalized Lebesgue measure. For p 6= 2, there is

equality in the right inequality if and only if µ is a cross measure.

Theorem B ([28]). Suppose p ∈ [1,∞]. If µ is an even isotropic measure on

Sn−1, then

κn(p
∗) ≤ V (Zp) ≤ κncp.

If p ∈ [1,∞) is not an even integer, then there is equality in the right inequality

if and only if µ is suitably normalized Lebesgue measure. For p 6= 2, there is

equality in the left inequality if and only if µ is a cross measure.

For the sine transform of even isotropic measures, sharp isoperimetric in-
equalities were established by G. Maresch and F. E. Schuster in [30]. The
corresponding reverse inequalities were obtained in an asymptotically optimal
form. The authors also showed that these new inequalities have direct appli-
cations to strong volume estimates for convex bodies from data about their
sections or projections.

The sine transform S µ of a finite Borel measure µ on Sn−1 is the continuous
function defined by

(S µ)(x) =

∫

Sn−1

|x|u⊥|dµ(u), x ∈ R
n.

Here, |x|u⊥| is the length of the orthogonal projection of x onto the hyper-
plane orthogonal to u. If µ is even and not concentrated on two antipodal
points, its sine transform uniquely determines a norm ‖ · ‖S∗

µ
on R

n whose unit

ball we denote by S∗
µ = S∗

µ(µ) and its polar by Sµ = Sµ(µ).
In this article we obtain sharp isoperimetric inequalities for the spherical

Lp-sine transform of isotropic measures.

Definition. For p ≥ 1, the Lp-sine transform Spµ of a finite Borel measure µ

on Sn−1 is the continuous function defined by

(Spµ)(x) =
(

∫

Sn−1

|x|u⊥|pdµ(u)
)

1

p

, x ∈ R
n.

If µ is even and not concentrated on two antipodal points, its Lp-sine trans-
form uniquely determines a norm ‖ · ‖S∗

p
on R

n whose unit ball we denote by

S∗
p = S∗

p(µ) and its polar by Sp = Sp(µ).



840 L. J. GUO AND G. LENG

Let p ≥ 1, define

αn,p :=
Γ(1 + n

p
)p

n
n−1n

n
p
−n(n− 1)

n
p
− n

n−1
+n

Γ(n−1
p

)
n

n−1

and

γn,p :=
(n− 1)κn−1Γ(

n+p−1
2 )Γ(12 )

κnΓ(
n+p
2 )

.

The main results of this article are the following two theorems.

Theorem 1. For p ≥ 1, if µ is an isotropic measure on Sn−1, then

κn

γn
n,p

≤ V (S∗
p ) ≤

κnγ
n
n,p

αn,p

.

If µ is even and p is not an even integer, then there is equality in the left

inequality if and only if µ is normalized Lebesgue measure.

Theorem 2. For p ≥ 1, if µ is an isotropic measure on Sn−1, then

κnαn,p

γn
n,p

≤ V (Sp) ≤ κnγ
n
n,p.

If µ is even and p is not an even integer, then there is equality in the right

inequality if and only if µ is normalized Lebesgue measure.

The reverse volume bounds in Theorem 1 and Theorem 2 are asymptotically
optimal as n → ∞. The ideas and techniques of K. Ball [1, 2], F. Barthe [3, 4],
E. Lutwak, D. Yang, G. Zhang [28], G. Maresch and F. E. Schuster [30] play
a critical role throughout this paper. It would be impossible to overstate our
reliance on their work.

2. Background material

For quick later reference, we collect in this section background material
regarding convex bodies (see e.g. the books of Gardner [6] and Schneider [36]).

Let R
n denote the Euclidean n-dimensional space with corresponding Eu-

clidean norm | · |. Let Bn
p = {x ∈ R

n : |x · e1|+ · · ·+ |x · en|
p ≤ 1} denote the

unit ball of the n-dimensional lnp -space, where e1, . . . , en denotes the canonical

basis for Rn. The set Sn−1 is the unit sphere of Bn
2 . Write κn for V (Bn

2 ), the
volume of Bn

2 , and let ωn denote the surface area of Bn
2 .

A convex body K is a compact, convex set with non-empty interior. Let
V (K) denote the volume of K and K n denote the space of convex bodies in
R

n endowed with the Hausdorff metric. A convex body K ∈ R
n is uniquely

determined by its support function hK defined for x ∈ R
n by

hK(x) = max{x · y : y ∈ K}.

The polar body K∗ of a convex body K containing the origin in its interior
is defined by

K∗ = {x ∈ R
n : x · y ≤ 1, ∀y ∈ K}.
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Let ρK(x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n \ {0}, denote the radial function

of the convex body K containing the origin. The Minkowski functional ‖ · ‖K
is defined by ‖x‖K = min{λ ≥ 0 : x ∈ λK}. Clearly, ρK(u) = ‖u‖−1

K for
u ∈ Sn−1. It follows from the definitions of support functions and radial
functions, and the definition of the polar body of K, that

ρK∗(·) = hK(·)−1 and hK∗(·) = ρK(·)−1.(2.1)

Using (2.1) and the polar coordinate formula for volume, it is easy to see
that the volume of a convex body K ∈ R

n containing the origin in its interior
is given by

V (K) =
1

Γ(1 + n
p
)

∫

Rn

e−hK∗(x)pdx.(2.2)

The classical Urysohn inequality (see, e.g. [36, p. 318]) provides an upper
bound for the volume of a convex body in terms of the average value of its
support function: If K ∈ K n has non-empty interior, then

(V (K)

κn

)
1

n

≤
1

nκn

∫

Sn−1

hK(u)du,(2.3)

with equality if and only if K is a ball. Here the integral is with respect to
spherical Lebesgue measure.

In order to prove our theorems, we shall require the following rank n − 1
case of the multidimensional Brascamp-Lieb inequality and its reverse form.

In the following we write πu, u ∈ Sn−1, for the orthogonal projection onto
the hyperplane u⊥.

Lemma 2.1 ([23], The Brascamp-Lieb Inequality). Let u1, . . . , um ∈ Sn−1,

m ≥ n, and c1, . . . , cm > 0 such that
m
∑

i=1

ciπui
= Id.

If fi : u
⊥
i → [0,∞), 1 ≤ i ≤ m, are integrable functions, then

∫

Rn

m
∏

i=1

fi(x|u
⊥
i )

cidx ≤
m
∏

i=1

(

∫

u⊥

i

fi
)ci

.(2.4)

There is equality if the fi, 1 ≤ i ≤ m, are identical Gaussian densities.

Lemma 2.2 ([3], The Reverse Brascamp-Lieb Inequality). Let u1, . . . , um ∈
Sn−1, m ≥ n, and c1, . . . , cm > 0 such that

m
∑

i=1

ciπui
= Id.

If fi : u
⊥
i → [0,∞), 1 ≤ i ≤ m, are integrable functions, then
∫

Rn

sup
{

m
∏

i=1

fi(yi)
ci : x =

m
∑

i=1

ciyi, yi ∈ u⊥
i

}

dx ≥

m
∏

i=1

(

∫

u⊥

i

fi
)ci

.(2.5)
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There is equality if the fi, 1 ≤ i ≤ m, are identical Gaussian densities.

The proof of the reverse Brascamp-Lieb inequality by Barthe relies on the
existence and uniqueness of a certain measure preserving map, the so called
Brenier map, between two sufficiently regular probability measures (see e.g.
[5, 31]). Barthe’s proof also exploited a classical principle dating back to Kan-
torovich which states that the problem of optimal mass transportation admits
two dual formulations. In particular, this duality principle made it possible to
derive both the Brascamp-Lieb inequality and its inverse form from a single
inequality which is stated in the following theorem.

Lemma 2.3. Let u1, . . . , um ∈ Sn−1, m ≥ n, and c1, . . . , cm > 0 such that

m
∑

i=1

ciπui
= Id.

If fi, gi : u
⊥
i → [0,∞), 1 ≤ i ≤ m, are integrable functions, such that

∫

u⊥

i

fi =

∫

u⊥

i

gi = 1.

Then
∫

Rn

m
∏

i=1

fi(x|u
⊥
i )

cidx ≤

∫

Rn

sup
{

m
∏

i=1

gi(yi)
ci : x =

m
∑

i=1

ciyi, yi ∈ u⊥
i

}

dx.(2.6)

Note that equality in (2.6) can only hold if the fi are extremizers for the
Brascamp-Lieb inequality and the gi are extremizers for the reverse Brascamp-
Lieb inequality.

3. Proof of the main results

Theorem 3.1. For p ≥ 1, if µ is an isotropic measure on Sn−1, then

V (S∗
p) ≤

V (Sp)

αn,p

.

Proof. First assume that µ is discrete and let suppµ = {u1, . . . , um} and
µ({ui}) =: c̄i > 0. Since µ is isotropic, if follows that µ(Sn−1) =

∑m
i=1 c̄i = n.

Since πu = Id− u⊗ u, it follows that

1

n− 1

m
∑

i=1

c̄iπui
=

m
∑

i=1

c̄iui ⊗ ui = Id.(3.1)

From (2.2) and the definition of the Lp-sine transform, it follows that

V (S∗
p) =

1

Γ(1 + n
p
)

∫

Rn

e
−‖x‖p

S∗
p dx

=
1

Γ(1 + n
p
)

∫

Rn

e−
∑m

i=1
c̄i|x|u

⊥

i |pdx
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=
1

Γ(1 + n
p
)

∫

Rn

m
∏

i=1

(

e−(n−1)|x|u⊥

i |p
)ci

dx,(3.2)

where ci :=
c̄i

(n−1) , i = 1, . . . ,m.

From the fact that |x|u⊥| = h(Bn|u⊥, x),
∑m

i=1 c̄i = n and Jensen’s inequal-
ity, it follows that, for all u ∈ Sn−1,

h
p
Sp
(u) = ‖u‖pS∗

p
=

m
∑

i=1

c̄i|u|u
⊥
i |

p

=
m
∑

i=1

c̄ih
p

Bn|u⊥

i

(u)

= n

∑m
i=1 c̄ih

p

Bn|u⊥

i

(u)
∑m

i=1 c̄i

≥ n
(

∑m
i=1 c̄ihBn|u⊥

i
(u)

∑m
i=1 c̄i

)p

= n1− 1

p

(

h∑
m
i=1

c̄iBn|u⊥

i
(u)

)p

,(3.3)

with equality if and only if |u|u⊥
1 | = · · · = |u|u⊥

m| or p = 1. Hence, we have

Sp ⊇
{

x ∈ R
n : x = n

1

p
−1

m
∑

i=1

c̄iyi, yi ∈ Bn|u⊥
i

}

=
{

x ∈ R
n : x = n

1

p
−1(n− 1)

m
∑

i=1

ciyi, yi ∈ Bn|u⊥
i

}

.

Consequently, we obtain

V (Sp) ≥

∫

Rn

sup
{

m
∏

i=1

1
[0,(n−1)n

1

p
−1

]
(|yi|)

ci : x =
m
∑

i=1

ciyi, yi ∈ u⊥
i

}

dx.(3.4)

Define functions fi : u
⊥
i → [0,∞), 1 ≤ i ≤ m, by

fi(y) =
p(n− 1)

n−1

p
−1

Γ(n−1
p

)κn−1

e−(n−1)|y|p ,(3.5)

and gi : u
⊥
i → [0,∞), 1 ≤ i ≤ m, by

gi(y) =
1

(

(n− 1)n
1

p
−1

)n−1
κn−1

1
[0,(n−1)n

1

p
−1

]
(|y|).(3.6)

Note that the normalizations are chosen such that
∫

u⊥

i

fi =

∫

u⊥

i

gi = 1.
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From the fact that
∑n

i=1 ci =
n

n−1 , (3.2) and (3.5), we have

V (S∗
p) =

1

Γ(1 + n
p
)

( Γ(n−1
p

)κn−1

p(n− 1)
n−1

p
−1

)
n

n−1

·

∫

Rn

m
∏

i=1

(p(n− 1)
n−1

p
−1

Γ(n−1
p

)κn−1

e−(n−1)|x|u⊥

i |p
)ci

dx

=
1

Γ(1 + n
p
)

( Γ(n−1
p

)κn−1

p(n− 1)
n−1

p
−1

)
n

n−1

∫

Rn

m
∏

i=1

f ci
i (x|u⊥

i )dx.(3.7)

From the fact that
∑n

i=1 ci =
n

n−1 , (3.4) and (3.6), we have

V (Sp)

≥
(

(

(n− 1)n
1

p
−1

)n−1
κn−1

)
n

n−1

·

∫

Rn

sup
{

m
∏

i=1

( 1
(

(n− 1)n
1

p
−1

)n−1
κn−1

1
[0,(n−1)n

1

p
−1

]
(|yi|)

)ci
:

x =
m
∑

i=1

ciyi, yi ∈ u⊥
i

}

dx

=
(

(n− 1)n
1

p
−1

)n
κ

n
n−1

n−1

∫

Rn

sup
{

m
∏

i=1

gcii (yi) : x =

m
∑

i=1

ciyi, yi ∈ u⊥
i

}

dx.(3.8)

Since
∑m

i=1 ciπui
= 1

n−1

∑m
i=1 c̄iπui

= Id and
∫

u⊥

i

fi =
∫

u⊥

i

gi = 1, by (3.7),

(3.8) and Lemma 2.3, we obtain,

V (S∗
p) ≤

1

Γ(1 + n
p
)

( Γ(n−1
p

)κn−1

p(n− 1)
n−1

p
−1

)
n

n−1 1
(

(n− 1)n
1

p
−1

)n
κ

n
n−1

n−1

V (Sp)

=
Γ(n−1

p
)

n
n−1

Γ(1 + n
p
)p

n
n−1n

n
p
−n(n− 1)

n
p
− n

n−1
+n

V (Sp)

=
V (Sp)

αn,p

.(3.9)

Now let µ be an arbitrary isotropic measure on Sn−1. As in [4], we can
construct a sequence µk, k ∈ N, of discrete isotropic measures such that µk

converges weakly to µ as k → ∞. It follows that limk→∞ hSpk
(µ)(v) = hsp(µ)(v)

for every v ∈ Sn−1. Since the pointwise convergence of support functions
implies the convergence of the respective convex bodies in the Hausdorff metric
(see e.g. [38, Chapter 1]), the continuity of volume and polarity on convex
bodies containing the origin in their interiors finishes the proof. �

In order to prove Theorems 1 and 2, we now only need the following result.
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Theorem 3.2. For p ≥ 1, if µ is an isotropic measure on Sn−1, then

κn

γn
n,p

≤ V (S∗
p) and V (Sp) ≤ κnγ

n
n,p.

If µ is even and p is not an even integer, then there is equality in either in-

equality if and only if µ is normalized Lebesgue measure.

Proof. It follows from the polar coordinate formula for volume, (2.1), and the
Hölder inequality that

(V (S∗
p)

κn

)− 1

n

=
( 1

nκn

∫

Sn−1

hSp
(u)−ndu

)− 1

n

≤
1

nκn

∫

Sn−1

hSp
(u)du

with equality if and only if hSp
(·) is constant, i.e., Sp is a ball. From the

definition of the sine transform and Fubini’s theorem, we obtain

1

nκn

∫

Sn−1

hSp
(u)du =

1

nκn

∫

Sn−1

∫

Sn−1

(

1− (u · v)2
)

p
2 dudµ(v)

=
1

nκn

∫

Sn−1

dµ(v)(n − 1)κn−1

∫ 1

−1

(1 − t2)
p
2
+n−3

2 dt

=
(n− 1)κn−1Γ(

n+p−1
2 )Γ(12 )

κnΓ(
n+p
2 )

= γn,p.

Consequently,
(V (S∗

p)

κn

)− 1

n

≤ γn,p

with equality if and only if Sp is a ball. Using standard techniques from the
theory of spherical harmonics (see the book [15] or the recent articles [11, 14,
17, 39, 41]) it is not difficult to show that the Lp sine transform is injective on
even measures if p is not an even integer. This yields the equality conditions
for even isotropic measures.

In order to establish the second inequality, we apply the classical Urysohn
inequality (2.3) to obtain

(V (Sp)

κn

)
1

n

≤
1

nκn

∫

Sn−1

hSp
(u)du = γn,p

with equality if and only if Sp is a ball. Again, this yields the equality conditions
for even isotropic measures. �

The proof that the reverse inequalities in Theorems 3.1 and 3.2 are asymp-
totically optimal is now almost verbatim the same as the corresponding proof
for p = 1 in [30].
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4. Volume estimates from Lp-sine transform

In this section, we obtain results which are analogues of volume estimates
due to E. Lutwak, D. Yang and G. Zhang [27] for p-projection bodies (see
also [19, 24, 32] for more information on Lp projection bodies). However,
in contrast to Lp projection bodies, the operators we consider will not be
compatible with general linear transformations but merely with rotations (see
[10, 12, 13, 21, 33, 37, 40, 42] for recent results concerning such operators).
Therefore we will put the convex bodies in Lp surface isotropic position, a
notion that we will recall in the following.

An important part of geometric tomography deals with the estimation of
the volume and other geometric quantities of a convex or star body from data
about the projections or the sections of the body (see e.g. [1, 7, 18, 35, 44, 46]
and, in particular, [6, Chapter 9] and the references therein).

For p ≥ 1, convex bodies K,L ∈ K n, and ε > 0, the Firey Lp-combination
K + ε · L is defined as the convex body whose support function is given by

hK+ε·L(·)
p = hK(·)p + εhL(·)

p.

For p ≥ 1, the Lp-mixed volume, Vp(K,L), of the convex bodies K,L was
defined in [25] by:

n

p
Vp(K,L) = lim

ε→0+

V (K + ε · L)− V (K)

ε
.

That this limit exists was demonstrated in [25]. It was shown in [25], that
corresponding to each convex body K containing the origin, there is a positive
Borel measure, Sp(K, ·), on Sn−1 such that

Vp(K,Q) =
1

n

∫

Sn−1

hQ(u)
pdSp(K,u)

for each convex body Q. The measure S1(K, ·) is just the classical surface area
measure of K.

Let K n
o denote the space of convex bodies that contain the origin in their

interior. We define an operator Φp : K n
o → K n

o by

hΦpK(v) =
( 1

κnγn,p

∫

Sn−1

|v|u⊥|pdSp(K,u)
)

1

p

,

where γn,p is defined as in the introduction. Here, the normalization is chosen
such that ΦpB

n
2 = Bn

2 . We will denote the polar of the body ΦpK by Φ∗
pK. It

is important to note that while Φp still commutes with orthogonal transforma-
tions, it does not intertwine affine transformations like the Lp-projection body
map. Consequently, the quantities V (ΦpK) and V (Φ∗

pK) are rigid motion in-
variant but not invariant under volume preserving linear transformations. In
fact, for a convex body K of given volume, V (ΦpK) may be arbitrarily large
and V (Φ∗

pK) arbitrarily small, respectively. We will therefore fix a position of
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the body, to be more precise, the Lp surface isotropic position, to bound the
quantities V (ΦpK) and V (Φ∗

pK).

Definition. A convex body K ∈ K n
o is said to be in Lp surface isotropic posi-

tion if and only if its Lp surface area measure Sp(K, ·) is, up to normalization,
isotropic. In this case, we denote the total measure Sp(K,Sn−1) by ∂p(K).

Theorem 4.1. If K ∈ K n is in Lp surface isotropic position, for 1 < p < ∞,

then

n
n
p κ

1+n
p

n γ
n
p
−n

n,p ≤ V (Φ∗
pK)∂p(K)

n
p ≤

n
n
p κ

1+n
p

n γ
n
p
+n

n,p

αn,p

.

There is equality in the left inequality among centrally symmetric convex bodies

if and only if K is a ball. Moreover,

n−n
p κ

1−n
p

n αn,p

γ
n+n

p
n,p

≤
V (ΦpK)

∂p(K)
n
p

≤ n−n
p κ

1−n
p

n γ
n−n

p
n,p ,

with equality in the right inequality among centrally symmetric convex bodies if

and only if K is a ball.

Proof. Define the non-negative Borel measure µ on Sn−1 by

µ =
n

∂p(K)
Sp(K, ·).

Since K is in Lp surface isotropic position, it follows that µ is isotropic. From
the definitions of Sp and the map Φp, we have

hSp
(x) =

(

∫

Sn−1

|x|u⊥|pdµ(u)
)

1

p

=
(nκnγn,p

∂p(K)

)
1

p
( 1

κnγn,p

∫

Sn−1

|x|u⊥|pdSp(K,u)
)

1

p

=
(nκnγn,p

∂p(K)

)
1

p

hΦpK(x).

Hence Sp =
(

nκnγn,p

∂p(K)

)
1

p

ΦpK and S∗
p =

(

∂p(K)
nκnγn,p

)
1

p

Φ∗
pK. An application of

Theorem 3.1 and Theorem 3.2 completes the proof. �
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