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A NOTE ON THE COMPLETE MOMENT CONVERGENCE

FOR ARRAYS OF B-VALUED RANDOM VARIABLES

Yongfeng Wu and Mingzhu Song

Abstract. In this article, we discuss the complete moment convergence
for arrays of B-valued random variables. We obtain some new results
which improve the corresponding ones of Sung and Volodin [17].

1. Introduction

Let {Ω,F ,P} be a probability space, and let B be a separable real Banach
space with norm ||·||. A random element is defined to be an F -measurable
mapping of Ω into B equipped with the Borel σ-algebra (that is, the σ-algebra
generated by the open sets determined by ||·||). The expected value of a B-
valued random element X is defined to be the Bochner integral and denoted
by EX .

Let {Xnk, k ≥ 1, n ≥ 1} be an array of random elements in a real Banach
space. An array of rowwise random elements {Xnk, k ≥ 1, n ≥ 1} is said to be
stochastically dominated by a random variable X (write {Xnk} ≺ X) if there
exists a constant C > 0 such that

sup
n≥1,k≥1

P (||Xnk|| > x) ≤ CP (|X | > x), ∀x > 0.

Now we recall the following concepts of convergence which were introduced
by Hsu and Robbins [6] and Chow [4], respectively.

Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is said to con-
verge completely to a constant θ if

∞
∑

n=1

P (|Xn − θ| > ε) < ∞ for all ε > 0.
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Definition 1.2. Let {Zn, n ≥ 1} be a sequence of random variables and an > 0,
bn > 0, q > 0. If

∞
∑

n=1

anE{b−1
n |Zn| − ε}q+ < ∞ for some or all ε > 0,

then the above result was called the complete moment convergence.

Remark 1.1. It is easily seen that the complete moment convergence is the
more general version of the complete convergence (see Remark 2.1).

Hsu and Robbins [6] proved that the sequence of arithmetic means of in-
dependent and identically distributed random variables converges completely
to the expected value if the variance of the summands is finite. This result
has been generalized and extended in several directions by many authors (see,
[3, 5, 7, 8, 9, 11, 14, 15, 17, 20, 22]). Some of these generalizations are in a
Banach space setting (see, [2, 7, 8, 9, 14, 15, 17]).

Chow [4] investigated the complete moment convergence for independent
random variables. His result also has been generalized and extended in subse-
quent literatures (see, [10, 12, 13, 16, 18, 19, 21]). However, according to our
knowledge, few articles discuss the complete moment convergence for weighted
sums of arrays of Banach space valued random elements.

Ahmed et al. [2] established the following theorem.

Theorem A. Let {Xnk, k ≥ 1, n ≥ 1} be an array of rowwise independent

random elements taking values in a separable real Banach space with {Xnk} ≺
X. Let {ank, k ≥ 1, n ≥ 1} be an array of constants such that

(1.1) sup
k≥1

|ank| = O(n−γ) for some γ > 0

and

(1.2)

∞
∑

k=1

|ank| = O(nα) for some α < γ.

Let β be such that α+ β 6= −1 and fix δ > 1 such that α/γ + 1 < δ ≤ 2. If

E|X |ν < ∞ where ν = max{1 + (1 + α+ β)/γ, δ}

and Sn ≡
∑∞

k=1 ankXnk → 0 in probability, then

(1.3)

∞
∑

n=1

nβP (||Sn|| > ε) < ∞ for all ε > 0.

Sung and Volodin [17] improved and complemented Theorem A. They ob-
tained the following result.

Theorem B. Suppose β ≥ −1. Let {Xnk, k ≥ 1, n ≥ 1} be an array of rowwise

independent random elements with {Xnk} ≺ X. Let {ank, k ≥ 1, n ≥ 1} be an

array of constants satisfying (1.1) and (1.2). Assume that
∑∞

k=1 ankXnk → 0
in probability. Then the following statements hold:
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(i) If 1 + α+ β < 0 and E|X | < ∞, then (1.3) holds.
(ii) If 1 + α+ β = 0 and E(|X | log |X |) < ∞, then (1.3) holds.
(iii) If 1 + α+ β > 0 and E|X |1+(1+α+β)/γ < ∞, then (1.3) holds.

In this article, we will improve Theorem B to the complete moment conver-
gence case and will obtain a much stronger conclusion under the same condi-
tions of Theorem B. The symbol C denotes a positive constant which is not
necessarily the same one in each appearance. Sn ≡

∑∞

k=1 ankXnk.

2. Preliminaries and main result

We first present some useful lemmas which are important in the proof of our
main result.

Lemma 2.1 (See Acosta [1]). Let {Xk, 1 ≤ k ≤ n} be a sequence of inde-

pendent random elements. Then there exists a positive constant Cp depending

only on p such that

(i) for 1 ≤ p ≤ 2,

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

∣

∣

∣

− E

∣

∣
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∣

∣

∣

∣

∣

n
∑
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ Cp

n
∑

k=1

E||Xk||
p,

(ii) for p > 2,
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∣

∣

∣
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∣

∣
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∣

∣

∣
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∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ Cp

{ n
∑

k=1

E||Xk||
p+

( n
∑

k=1

E||Xk||
2

)p/2}

.

Lemma 2.2 (See Sung and Volodin [17]). Let {Xnk, k ≥ 1, n ≥ 1} be an array

of rowwise independent random elements. Suppose there exists δ > 0 such that

||Xnk|| ≤ δ a.s. for all k ≥ 1 and n ≥ 1. Put Tn =
∑∞

k=1 Xnk. If Tn → 0 in

probability, then E||Tn|| → 0 as n → ∞.

Now we state our main result and its proof.

Theorem 2.1. Suppose β ≥ −1. Let {Xnk, k ≥ 1, n ≥ 1} be an array of row-

wise independent random elements with {Xnk} ≺ X. Let {ank, k ≥ 1, n ≥ 1} be

an array of constants satisfying (1.1) and (1.2). Assume that
∑∞

k=1 ankXnk →
0 in probability. Then the following statements hold:

(i) If 1 + α+ β < 0 and E|X | < ∞, then

(2.1)

∞
∑

n=1

nβE
{

||Sn|| − ε
}

+
< ∞ for all ε > 0.

(ii) If 1 + α+ β = 0 and E(|X | log |X |) < ∞, then (2.1) holds.
(iii) If 1 + α+ β > 0 and E|X |1+(1+α+β)/γ < ∞, then (2.1) holds.
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Remark 2.1. Notice that the conditions of Theorem 2.1 are same as those of
Theorem B and

∞
∑

n=1

nβE
{

||Sn|| − ε
}

+

=

∞
∑

n=1

nβ

∫ ∞

0

P (||Sn|| − ε > t)dt

≥
∞
∑

n=1

nβ

∫ ε

0

P (||Sn|| − ε > t)dt ≥ ε
∞
∑

n=1

nβP (||Sn|| > 2ε),

hence Theorem 2.1 improves Theorem B.

Remark 2.2. It is not difficult to find that there exists some difference among
the results of Kim and Ko [9], Qiu et al. [14] and Sung and Volodin [17]. Kim
and Ko [9] studied the case β = −1 and 1+α+β > 0. Qiu et al. [14] discussed
the case β ≥ −1 and 1+α+β = 0. However, Sung and Volodin [17] investigated
the case β ≥ −1 and 1 + α+ β ≥ 0. Since Theorem 2.1 improves Theorem B,
to some extent, it also improves the results of Kim and Ko [9], Qiu et al. [14]
(Theorem 2 with θ = 1).

Proof of Theorem 2.1. By the conditions (1.1) and (1.2), without loss of gen-
erality, we may assume that

(2.2) sup
k≥1

|ank| = n−γ

and

(2.3)

∞
∑

k=1

|ank| = nα.

We will prove (2.1) by considering the following four cases.
Case 1: 1 + α+ β < 0

By (2.3), {Xnk} ≺ X and E|X | < ∞, we get
∞
∑

n=1

nβE
{

||Sn|| − ε
}

+
≤

∞
∑

n=1

nβE||Sn|| ≤ C

∞
∑

n=1

nα+βE|X | < ∞.

Case 2: 1 + α+ β = 0
Since

∞
∑

n=1

nβE
{

||Sn|| − ε
}

+

=

∞
∑

n=1

nβ

∫ ∞

0

P (||Sn|| > ε+ t)dt

=

∞
∑

n=1

nβ

∫ 1

0

P (||Sn|| > ε+ t)dt+

∞
∑

n=1

nβ

∫ ∞

1

P (||Sn|| > ε+ t)dt
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≤

∞
∑

n=1

nβP (||Sn|| > ε) +

∞
∑

n=1

nβ

∫ ∞

1

P (||Sn|| > t)dt

=: I1 + I2,

in order to prove (2.1), we need only to show that I1 < ∞ and I2 < ∞.
From Theorem B, we get immediately I1 < ∞. Then we prove I2 < ∞. Let
Ynk = ankXnkI(||ankXnk|| ≤ t), Znk = ankXnk − Ynk, then

I2 ≤

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

P (||ankXnk|| > t)dt+

∞
∑

n=1

nβ

∫ ∞

1

P

(
∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Ynk

∣

∣

∣

∣

∣

∣

∣

∣

> t

)

dt

=: I3 + I4.

From {Xnk} ≺ X , (2.2), (2.3) and E(|X | log(|X |)) < ∞, we have

I3 ≤
∞
∑

n=1

nβ
∞
∑

k=1

E||ankXnk||I(||ankXnk|| > 1)

≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |I(|X | > |ank|
−1) (by (2.2) and (2.3))

≤ C
∞
∑

n=1

n−1E|X |I(|X | > nγ)

= C

∞
∑

n=1

n−1
∞
∑

m=n

E|X |I(mγ < |X | ≤ (m+ 1)γ)

= C
∞
∑

m=1

E|X |I(mγ < |X | ≤ (m+ 1)γ)
m
∑

n=1

n−1

≤ C

∞
∑

m=1

logm E|X |I(mγ < |X | ≤ (m+ 1)γ)

≤ CE(|X | log |X |) < ∞.

For I4, we first prove that for all t ≥ 1, β ≥ −1 and 1 + α+ β ≥ 0

(2.4) t−1E

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Znk

∣

∣

∣

∣

∣

∣

∣

∣

→ 0 as n → ∞

and

(2.5) t−1E

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Ynk

∣

∣

∣

∣

∣

∣

∣

∣

→ 0 as n → ∞.

For all t ≥ 1, by {Xnk} ≺ X , β ≥ −1 and E|X |1+(1+α+β)/γ < ∞, we have

t−1E

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Znk

∣

∣

∣

∣

∣

∣

∣

∣

≤ t−1
∞
∑

k=1

E||Znk||
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≤ Ct−1
∞
∑

k=1

E|ankX |I(|ankX | > t)

≤ C

∞
∑

k=1

E|ankX |I(|ankX | > 1)

≤ C

∞
∑

k=1

E|ankX |1+(1+α+β)/γI(|ankX | > 1)

≤ Cn−(β+1)E|X |1+(1+α+β)/γI(|X | > nγ) → 0 as n → ∞.

Therefore, (2.4) holds. From (2.4) and the hypothesis
∑∞

k=1 ankXnk → 0 in
probability, we get t−1

∑∞

k=1 Ynk → 0 in probability for all t ≥ 1. Noting that
||t−1Ynk|| ≤ 1, by Lemma 2.2, we know (2.5) holds. Hence while n is sufficiently
large, E||

∑∞

k=1 Ynk|| ≤ t/2 holds uniformly for t ≥ 1. Then by the Markov
inequality and Lemma 2.1, we have

I4 ≤

∞
∑

n=1

nβ

∫ ∞

1

P
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∣

∣
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∣

∣

> t/2

)

dt

≤ C

∞
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n=1
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1

t−2E

(
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∣
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∣
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∣
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∣

∣

∣

∣
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Ynk
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∣
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∣

∣

)2

dt

≤ C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−2E||Ynk||
2dt

≤ C
∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−2
{

E(ankX)2I(|X | ≤ |ank|
−1t) + t2P (|X | > |ank|

−1t)
}

dt

≤ C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−2E(ankX)2I(|X | ≤ |ank|
−1)dt

+ C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−2E(ankX)2I(|ank|
−1 < |X | ≤ |ank|

−1t)dt

+ C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

P (|X | > |ank|
−1t)dt

=: I5 + I6 + I7.

Here, we used the fact that if a random variableXnk is stochastically dominated
by a random variable X , then for all q > 0 and x > 0

E||Xnk||
qI(||Xnk|| ≤ x) ≤ C{E|X |qI(|X | ≤ x) + xqP (|X | > x)}.

For I7, by a similar argument as in the proof of I3 < ∞, we have

I7 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |I(|X | > |ank|
−1) < ∞.
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For I5, we have

I5 ≤ C
∞
∑

n=1

nβ
∞
∑

k=1

E(ankX)2I(|X | ≤ |ank|
−1)

= C

∞
∑

n=1

nβ
∞
∑

k=1

E(ankX)2I(|X | ≤ nγ)

+ C

∞
∑

n=1

nβ
∞
∑

k=1

E(ankX)2I(nγ < |X | ≤ |ank|
−1)

=: I∗5 + I∗∗5 .

From (2.2) and (2.3), we get

I∗5 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

|ank|(sup
k≥1

|ank|)EX2I(|X | ≤ nγ)

≤ C

∞
∑

n=1

n−1−γEX2I(|X | ≤ nγ)

= C

∞
∑

n=1

n−1−γ
n
∑

m=1

EX2I((m− 1)γ < |X | ≤ mγ)

= C
∞
∑

m=1

EX2I((m− 1)γ < |X | ≤ mγ)
∞
∑

n=m

n−1−γ

≤ C

∞
∑

m=1

m−γEX2I((m− 1)γ < |X | ≤ mγ) ≤ CE|X | < ∞.

By a similar argument as in the proof of I3 < ∞, we have

I∗∗5 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |I(nγ < |X | ≤ |ank|
−1)

≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |I(|X | > nγ)

≤ C

∞
∑

n=1

n−1E|X |I(|X | > nγ) < ∞.

Next we consider I6. Noting that
∫ ∞

1

t−2E(ankX)2I(|ank|
−1 < |X | ≤ |ank|

−1t)dt

=

∞
∑

m=1

∫ m+1

m

t−2E(ankX)2I(1 < |ankX | ≤ t)dt
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≤

∞
∑

m=1

m−2E(ankX)2I(1 < |ankX | ≤ m+ 1)

=
∞
∑

m=1

m−2
m
∑

s=1

E(ankX)2I(s < |ankX | ≤ s+ 1)

=

∞
∑

s=1

E(ankX)2I(s < |ankX | ≤ s+ 1)

∞
∑

m=s

m−2

≤
∞
∑

s=1

s−1E(ankX)2I(s < |ankX | ≤ s+ 1)

≤ CE|ankX |I(|ankX | > 1).

Hence by a similar argument as in the proof of I3 < ∞, we have

I6 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |I(|X | > |ank|
−1) < ∞.

The proof of (2.1) for 1 + α+ β = 0 is completed.
Case 3: 0 < 1 + α+ β < γ (i.e., 1 < 1 + (1 + α+ β)/γ < 2)

As in Case 2, by Theorem B, we can prove that I1 < ∞. By a similar
argument as in Case 2 and E|X |1+(1+α+β)/γ < ∞, we have

I3 ≤ C

∞
∑

m=1

E|X |I(mγ < |X | ≤ (m+ 1)γ)

m
∑

n=1

nα+β

≤ C

∞
∑

m=1

mα+β+1 E|X |I(mγ < |X | ≤ (m+ 1)γ)

≤ CE|X |1+(1+α+β)/γ < ∞.

Notice that (2.4) and (2.5) also hold for 1 + α + β > 0, we need only to
prove I4 < ∞. By similar arguments as in Case 2, we can prove that I∗5 < ∞,
I∗∗5 < ∞, I6 < ∞ and I7 < ∞. Here we omit the details.
Case 4: 1 + α+ β ≥ γ (i.e., 1 + (1 + α+ β)/γ ≥ 2)

As in Case 2, we can prove that I1 < ∞, I3 < ∞, (2.4) and (2.5). Hence
we need only to prove I4 < ∞. Take η > 0 such that η > max{1 + (1 + α +
β)/γ, 2(1 + β)/(r − α)}. By the Markov inequality and Lemma 2.1, we have

I4 ≤
∞
∑

n=1

nβ

∫ ∞

1

P

(∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Ynk

∣

∣

∣

∣

∣

∣

∣

∣

−E

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

Ynk

∣

∣

∣

∣

∣

∣

∣

∣

> t/2

)

dt

≤ C

∞
∑

n=1

nβ

∫ ∞

1

t−η

{

∞
∑

k=1

E||Ynk||
η +

( ∞
∑

k=1

E||Ynk||
2

)η/2
}

dt

= C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−ηE||Ynk||
ηdt+ C

∞
∑

n=1

nβ

∫ ∞

1

t−η

( ∞
∑

k=1

E||Ynk||
2

)η/2

dt
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=: I8 + I9.

By {Xnk} ≺ X , we have

I8 ≤ C
∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−η
{

E|ankX |ηI(|X | ≤ |ank|
−1t) + tηP (|X | > |ank|

−1t)
}

dt

= C
∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−ηE|ankX |ηI(|X | ≤ |ank|
−1)dt

+ C

∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

t−ηE|ankX |ηI(|ank|
−1 < |X | ≤ |ank|

−1t)dt

+ C
∞
∑

n=1

nβ
∞
∑

k=1

∫ ∞

1

P (|X | > |ank|
−1t)dt

=: I10 + I11 + I12.

By a similar argument as in the proof of I7 < ∞, we get I12 < ∞. By a
similar argument as in the proof of I6 < ∞ (by replacing exponent 2 into η),
we get I11 < ∞. For I10, we have

I10 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |ηI(|X | ≤ nγ)

+ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |ηI(nγ < |X | ≤ |ank|
−1)

=: I∗10 + I∗∗10 .

By a similar argument as in the proof of I∗5 < ∞, we get

I∗10 ≤ C
∞
∑

n=1

nα+β−(η−1)γE|X |ηI(|X | ≤ nγ) ≤ CE|X |1+(1+α+β)/γ < ∞.

Take θ > 0 such that 1 < θ < 1 + (1 + α+ β)/γ. Obviously θ < η, then

I∗∗10 ≤ C

∞
∑

n=1

nβ
∞
∑

k=1

E|ankX |θI(nγ < |X | ≤ |ank|
−1)

≤ C

∞
∑

n=1

nα+β−(θ−1)γE|X |θI(|X | > nγ)

= C

∞
∑

n=1

nα+β−(θ−1)γ
∞
∑

m=n

E|X |θI(mγ < |X | ≤ (m+ 1)γ)

= C

∞
∑

m=1

E|X |θI(mγ < |X | ≤ (m+ 1)γ)

m
∑

n=1

nα+β−(θ−1)γ
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≤ C

∞
∑

m=1

m1+α+β−(θ−1)γE|X |θI(mγ < |X | ≤ (m+ 1)γ)

≤ CE|X |1+(1+α+β)/γ < ∞.

Finally, we prove I9 < ∞. From (2.2), (2.3) and η > 2(1 + β)/(r − α), we
have

I9 ≤ C
∞
∑

n=1

nβ

∫ ∞

1

t−η

( ∞
∑

k=1

a2nkE||Xnk||
2

)η/2

dt

≤ C

∞
∑

n=1

nβ

∫ ∞

1

t−η

(

sup
k≥1

|ank|

∞
∑

k=1

|ank|E|X |2
)η/2

dt

≤ C

∞
∑

n=1

nβ−(γ−α)η/2(E|X |2)η/2 < ∞.

The proof is complete. �

3. Complete moment convergence of moving average processes

As an application, we state one result on the complete moment convergence
of moving average processes, which improves Theorem 4.1 of Sung and Volodin
[17].

Theorem 3.1. Suppose β ≥ −1. Let {Yk,−∞ < k < ∞} be a doubly infinite

sequence of independent random elements which are stochastically dominated

by a random variable X. Let {ak,−∞ < k < ∞} be an absolutely summa-

ble sequence of real numbers and set Xi =
∑∞

k=−∞ ai+kYk, i ≥ 1. Assume

that
∑n

i=1 Xi/n
1/p → 0 in probability, where 1 ≤ p < 2. Then the following

statements hold:
(i) If β > −1, 1 ≤ p < 2 and E|X |p(β+2) < ∞, then

∞
∑

n=1

nβ−1/pE

{∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

∣

∣

∣

− εn1/p

}

+

< ∞ for all ε > 0.

(ii) If 1 < p < 2 and E|X |p < ∞, then

∞
∑

n=1

n−1−1/pE

{
∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

∣

∣

∣

− εn1/p

}

+

< ∞ for all ε > 0.

(iii) If E(|X | log |X |) < ∞, then

∞
∑

n=1

n−2E

{∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

∣

∣

∣

− εn

}

+

< ∞ for all ε > 0.

Proof. Let Xnk = Yk and ank = n−1/p
∑n

i=1 ai+k for −∞ < k < ∞ and n ≥ 1.
Then the result follows by Theorem 2.1 with α = 1−1/p, γ = 1/p and 1 ≤ p < 2
(see the proof of Theorem 4.1 in [17]). �
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