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AN IDENTITY BETWEEN THE m-SPOTTY

ROSENBLOOM-TSFASMAN WEIGHT ENUMERATORS OVER

FINITE COMMUTATIVE FROBENIUS RINGS

Mehmet Özen, Minjia Shi, and Vedat Şiap

Abstract. This paper is devoted to presenting a MacWilliams type iden-
tity for m-spotty RT weight enumerators of byte error control codes over
finite commutative Frobenius rings, which can be used to determine the
error-detecting and error-correcting capabilities of a code. This provides
the relation between the m-spotty RT weight enumerator of the code and
that of the dual code. We conclude the paper by giving three illustrations
of the results.

1. Introduction

The error control codes play an important role in improving reliability in
communications and computer memory system [5]. Recently, high-density
RAM chips with wide I/O data, called a byte, have been increasedly used
in computer memory systems. These chips are very likely to have multiple
random bit errors when exposed to strong electromagnetic waves, radio-active
particles or high-energy cosmic rays. To make these memory systems more
reliable, spotty [21] and m-spotty [20] byte errors are introduced, which can be
effectively detected or corrected using byte error-control codes. To make clear
the error-detecting and error-correcting capabilities of a code, the research has
been done on some special types of polynomials, called weight enumerators.

In general, the weight enumerator of a code is a polynomial describing certain
properties of the code, and an identity which relates the weight enumerator of a
code with that of its dual code is called the MacWilliams type identity. For the
past few years, various weight enumerators with respect to m-spotty Hamming
Weight (Lee weight and RT weight) have been studied for various types of
codes. Suzuki et al. [19] proved a MacWilliams type identity for binary byte

error-control codes. M. Özen and V. Siap [8] and I. Siap [17] extended this result
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to arbitrary finite fields and to the ring F2+uF2 with u2 = 0, respectively, which
was generalized to ring F2 + uF2 + · · · + um−1F2 with um = 0 in [15]. I. Siap
[16] derived a MacWilliams type identity for m-spotty Lee weight enumerator
of byte error-control codes over Z4. A. Sharma and A. K. Sharma introduced
joint m-spotty weight enumerators of two byte error-control codes over the ring
of integers modulo ℓ and over arbitrary finite fields with respect tom-spotty Lee
weight [14], r-fold joint m-spotty weight [12] and m-spotty Hamming weight
[13]. They also discussed some of their applications and derived MacWilliams
type identities for these enumerators.

In this paper, we will consider a MacWilliams type identity for m-spotty
RT weight enumerators of linear codes over finite commutative Frobenius ring,
which generalizes the results (case of binary field) of [9] to arbitrary finite
commutative Frobenius ring. The organization of this paper is as follows:
Section 2 provides definitions ofm-spotty RT weight andm-spotty RT distance.
Section 3 presents MacWilliams type identities for m-spotty RT weight, and
Section 4 illustrates the weight distribution of the m-spotty byte error control
code by three examples. Finally, the paper concludes in Section 5.

2. Preliminaries

In this section, we begin by giving some basic definitions that we need to
derive our results. Let R be a finite commutative Frobenius ring with unity
and N be a positive integer. Let us recall some basic knowledge about R as
describe in [3]. Writing the identity element 1 of the ring as the sum of the
primitive idempotents of R, we obtain an isomorphism

R
∼=
−−→
φ

R1 ⊕ · · · ⊕Rs,

where R1, . . . , Rs are local commutative rings. The finite commutative ring R is
called a Frobenius ring if R is self-injective (i.e., the regular module is injective),
or equivalently, (C⊥)⊥ = C for any submodule C of any free R-module Rn,
where C⊥ denotes the orthogonal submodule of C with respect to the usual
Euclidean inner product on Rn. Moreover, in this case, |C⊥||C| = |R|n for any
submodule C of Rn, where |C| denotes the cardinality of C. This is one of the
reasons why only finite Frobenius rings are suitable for coding alphabets. With
the isomorphism φ, R is Frobenius if and only if every local component Ri is
Frobenius, and the finite local Frobenius ring Ri is Frobenius if and only if Ri

has a unique minimal ideal.
A character of R is a homomorphism π,

π : (R,+) → (C×, ·).

R is Frobenius if and only if there exists a character χ of R such that ker π
contains no nonzero left (right) ideal of R. This π is a generating character. Let

R̂ be all characters ofR, for any character π ∈ R̂, there are two homomorphisms
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R → R̂:
r 7→ rπ,

r 7→ πr.

The first is left linear; The second is right linear. A character is left (right)
generating character if the first (second) map is surjective. The reader may
refer to [22] for more details on Frobenius rings.

Let RN be the R-module of all N -tuples over R. For a positive divisor b of
N , a byte error-control code of length N and byte length b over R is defined
as an R-submodule of RN .

The RT weight and the RT distance over R are defined as follows:

Definition 2.1 (see [1, 7, 11]). Let c = (c1, c2, . . . , cbn) ∈ Rbn, and

wRT (c) =

{
max{i : ci 6= 0} c 6= 0,

0 c = 0.

wRT (c) is called the RT weight of c.

Definition 2.2 (see [21]). A spotty byte error is defined as t or fewer bits
errors within a b-bit byte, where 1 ≤ t ≤ b. When none of the bits in a byte is
in error, we say that no spotty byte error has occurred.

An s-spotty byte error is defined as a random t-bit error within a byte. If
there are more than t-bit errors in a byte, the errors are defined as m-spotty
byte errors. We can define the m-spotty RT weight and the m-spotty RT
distance over R as follows.

Definition 2.3. Let e ∈ RN be an error vector and ei ∈ Rb be the i-th byte
of e, where N = nb and 1 ≤ i ≤ n. The number of t/b-errors in e, denoted by
wMRT (e), and m-spotty RT weight is defined as

wMRT (e) =

n∑

i=1

⌈wRT (ei)

t

⌉
,

where ⌈x⌉ denotes the smallest integer not less than x.

Definition 2.4. Let c and v be codewords of m-spotty byte error control code
C over R. Here ci and vi are the i-th bytes of c and v, respectively. Then,
m-spotty RT distance function between c and v, denoted by dMRT , is defined
as follows:

dMRT (c, v) =

n∑

i=1

⌈dRT (ci, vi)

t

⌉
.

In Definition 2.4, if we take t = b = 1, then the m-spotty RT metric coincides
with both RT and Hamming metrics. Also, in the case of t = n = 1, the m-
spotty RT metric coincides with RT metric.

Remark 2.5. Similar to the proof of Theorem 2.5 in [9], m-spotty RT distance
over R is a metric, that is, this function satisfies the metric axioms.
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3. The MacWilliams identity over finite commutative Frobenius

rings

Hereinafter, codes will be taken to be of length N where N is a multiple of
byte length b, i.e., N = bn.

Let c = (c1, c2, . . . , cN ) and v = (v1, v2, . . . , vN ) be two elements of RN .
The inner product of c and v, denoted by 〈c, v〉, is defined as follows: 〈c, v〉 =
n∑

i=1

〈ci, vi〉 =
n∑

i=1

( b∑
j=1

c(i,j)v(i,b−j+1)

)
.Here, 〈ci, vi〉 =

b∑
j=1

c(i,j)v(i,b−j+1) denotes

the inner product of ci and vi, respectively. Also c(i,j) and v(i,b−j+1) are the
j-th bits of ci and vi, respectively. The inner product for each byte is taken in
reverse order similar to the RT case where n = 1.

Now we recall some examples of finite commutative Frobenius rings and
their generating characters, most of them can be found in [2] and [22].

Remark 3.1. Here are some examples of finite commutative Frobenius rings.

(i) Let R = F be a finite field. A generating character χ on R = F is given

by χ(x) = ξTr(x), where ξ = e
2πi
p and Tr : F → Fp is the trace function

from F to Fp.

(ii) Let R = Zℓ. Set ξ = e
2πi
ℓ . Then χ(x) = ξx, x ∈ Zℓ, is a generating

character.
(iii) The finite direct sum of Frobenius rings is Frobenius. If R1, . . . , Rn each

has generating characters χ1, . . . , χn, then R = ⊕Ri has generating
character χ =

∏
χi.

(iv) Any Galois ring is Frobenius. A Galois ringR=GR(pn, r) ∼= Zpn [x]/ 〈f〉
is a Galois extension of Zpn of degree r, where f is a monic irreducible
polynomial in Zpn [x] of degree r. Because f is monic, any element a of

R is represented by a unique polynomial r =
∑r−1

i=1 aix
i, with ai ∈ Zpn .

Set ξ = e
2πi
pn . Then χ(a) = ξar−1 .

(v) R = F2[u1, . . . , uk]/
〈
u2
i = 0, uiuj = ujui

〉
is a Frobenius ring. Let rk =∑

A⊆{1,2,...,k}

cAuA ∈ R. Then (cA) can be thought of as a binary vector

of length 2k. Let wt(cA) be the Hamming weight of this vector. Then
χ(rk) = (−1)wt(cA).

In order to prove our main theorem, we should first prove the following two
lemmas. From now onwards, we assume χ be a generating character over finite
commutative Frobenius rings in Remark 3.1. ℓ denotes the cardinality of R,
i.e., |R| = ℓ.

Lemma 3.2. Let c = (c1, . . . , cb) ∈ Rb with wRT (c) = j. For any 0 ≤ k ≤ b,
we have

S(ℓ)(k, j) :=
∑

wRT (v)=k

χc(v)
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=





1, if k = 0;

ℓk−1(ℓ − 1), if 1 ≤ k ≤ b− j;

−ℓk−1, if k = b+ 1− j;

0, if k ≥ b+ 2− j.

Proof. It is easy to verify the result when k = 0. Let us assume 1 ≤ k ≤ b from
here.

S(ℓ)(k, j) =
∑

wRT (v)=k

χ(〈c, v〉)

=
∑

wRT (v)=k

χ(v1cb + · · ·+ vkcb+1−k)

=

(
k−1∏

i=1

( ∑

vi∈R

χ(cb+1−ivi)
)
)

×
( ∑

vk∈R∗

χ(cb+1−kvk)
)
.

Denote Ti =
∑

vi∈R χ(cb+1−ivi) (1 ≤ i ≤ k−1), and Tk =
∑

vk∈R∗ χ(cb+1−kvk).
If k ≤ b − j, then we have cb = · · · = cb+1−k = 0 and

Ti =
∑

vi∈R

χ(0 · vi) =
∑

vi∈R

1 = ℓ, Tk =
∑

vk∈R∗

1 = ℓ− 1.

Hence S(ℓ)(k, j) = ℓk−1(ℓ − 1). If k = b + 1 − j, we get cb = · · · = cb+2−k = 0
and cb+1−k = cj 6= 0, and then

Ti = ℓ, Tk =
∑

vk∈R

χ(cjvk)− χ(cj · 0) = −1.

Hence, S(ℓ)(k, j) = −ℓk−1. If k ≥ b + 2 − j, then the last k − 1 positions of
codeword c contain at least one nonzero element, suppose for some j ≥ b−k+2,
cj 6= 0, we have

Tb+1−j =
∑

vb+1−j∈R

χ(cjvb+1−j) = 0.

Hence S(ℓ)(k, j) = 0. This proves the lemma. �

The following theorem gives a partial information for V (t,ℓ)(z).

Theorem 3.3. Let c = (c1, c2, . . . , cb) and v = (v1, v2, . . . , vb) be two elements

of Rb, with wRT (c) = j. Then we have the following

(i)
∑

v∈Rb

χc(v)z
⌈wRT (v)/t⌉ = V

(t,ℓ)
j (z),

where V
(t,ℓ)
j (z) =

∑b
k=0 S

(ℓ)(k, j)z⌈k/t⌉.
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(ii) Let z = 1 in V
(t,ℓ)
j (z). Then

V
(t,ℓ)
j (1) =

{
ℓb, if j = 0;

0, if j 6= 0.

(iii) For 0 ≤ j ≤ b, let s = b− j in Lemma 3.2, then

V
(t,ℓ)
j (z) =

{
1 + (ℓb − 1)z, if j = 0, k ≤ t ≤ b;

1− z, if j = b− s ≥ 1, s+ 1 ≤ t ≤ b,

where k is the parameter of S(ℓ)(k, j) in the expression of V
(t,ℓ)
j (z).

Proof. (i) Using Lemma 3.2, we can obtain

∑

v∈Rb

χc(v)z
⌈wRT (v)/t⌉ =

b∑

k=0

∑

wRT (v)=k

χc(v)z
⌈k/t⌉

=

b∑

k=0

z⌈k/t⌉




∑

wRT (v)=k

χc(v)




=
b∑

k=0

S(ℓ)(k, j)z⌈k/t⌉ = V
(t,ℓ)
j (z).

(ii) Let z = 1. Suppose j = 0, then according to Lemma 3.2, we have

V
(t,ℓ)
0 (1) =

b∑

k=0

S(ℓ)(k, 0) = 1 +

b∑

k=1

S(ℓ)(k, 0) = 1 +

b∑

k=1

ℓk−1(ℓ− 1) = ℓb.

Suppose j 6= 0, according to Lemma 3.2, we can get

V
(t,ℓ)
j (1) =

b∑

k=0

S(ℓ)(k, j) = 1 +

b−j∑

k=1

S(ℓ)(k, j) +

b∑

k=b−j+1

S(ℓ)(k, j)

= 1 +

b−j∑

k=1

ℓk−1(ℓ− 1)− ℓb−j = 0.

(iii) Suppose j = 0 and k ≤ t ≤ b. By applying Lemma 3.2, then

V
(t,ℓ)
0 (z) =

b∑

k=0

S(ℓ)(k, 0)z⌈k/t⌉ = 1 +

b∑

k=1

S(ℓ)(k, 0)z = 1 + (ℓb − 1)z.

Suppose j = b− s ≥ 1 and s+ 1 ≤ t ≤ b. According to Lemma 3.2, then

V
(t,ℓ)
b−s (z) =

b∑

k=0

S(ℓ)(k, b− s)z⌈k/t⌉ = 1 +

(
s∑

k=1

S(ℓ)(k, b − s)− ℓs

)
z

= 1 +

(
s∑

k=1

ℓk−1(ℓ− 1)− ℓs

)
z = 1− z.
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This proves the results. �

Let (G,+) be a finite abelian group and V be a vector space over the complex

numbers. The set Ĝ of all characters of G forms an abelian group under
pointwise multiplication. For any function f : G −→ V , define its Fourier

transform f̂ : Ĝ −→ V by

f̂(π) =
∑

x∈G

π(x)f(x), π ∈ Ĝ.

Given a subgroupH ⊆ G, define an annihilator (Ĝ : H) = {π ∈ Ĝ : π(H) = 1}.

Moreover, we have |(Ĝ : H)| = |G|/|H |.

The Poission summation formula relates the sums of a function over a sub-
group to the sum of its Fourier transform over the annihilator of the subgroup.
The following lemma can be found in [22], which plays an important role in
deriving the MacWilliams identity for m-spotty RT weight.

Lemma 3.4 (Poisson Summation Formula). Let H ⊂ G be a subgroup, and

let f : G −→ V be any function from G to a complex vector space V . Then

∑

x∈H

f(x) =
1

|(Ĝ : H)|

∑

π∈(Ĝ:H)

f̂(π).

Let αj = #{i : wRT (ci) = j, 1 ≤ i ≤ n}. That is, αj is the number
of bytes having RT weight j, 0 ≤ j ≤ b, in a codeword. The summation of

α0, α1, . . . , αb is equal to the code length in bytes, that is
∑b

j=0 αj = n. The

RT weight distribution vector (α0, α1, . . . , αb) is determined uniquely for the
codeword c. Then, the m-spotty RT weight of the codeword c is expressed

as wMRT (c) =
∑b

j=0⌈j/t⌉ · αj . Let A(α0,α1,...,αb)(C) be the number of code-

words with RT weight distribution vector (α0, α1, . . . , αb). For example, let
c = (010 012 020 202 000 200) be a codeword over F3 with byte 3. Then, the
RT weight distribution vector of the codeword is (α0, α1, α2, α3) = (1, 1, 2, 2).
Therefore, A(1,1,2,2)(C) is the number of codewords with RT weight distribution
vector (1, 1, 2, 2).

We are now ready to define the m-spotty RT weight enumerator of a byte
error control code over R.

Definition 3.5. The weight enumerator for m-spotty byte error control code
C is defined as

WC(z) =
∑

c∈C

zwMRT (c).
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By using the parameter A(α0,α1,...,αb)(C), which denotes the number of code-
words with RT weight distribution vector (α0, α1, . . . , αb), WC(z) can be ex-
pressed as follows:

WC(z) =
∑

(α0,...,αb)
α0,...,αb≥0

α0+···+αb=n

A(α0,...,αb)(C)

b∏

j=0

(z⌈j/t⌉)αj .

The next theorem holds for the weight enumerator WC(z) of the code and
that of the dual code C⊥, expressed as WC⊥(z).

Theorem 3.6. Let C be a linear code and C⊥ be its dual code. The relation

between the m-spotty RT weight enumerators of C and C⊥ is given by

WC⊥(z) =
∑

(α0,...,αb)
α0,...,αb≥0

α0+···+αb=n

A⊥
(α0,...,αb)

(C)

b∏

j=0

(z⌈j/t⌉)αj

=
1

|C|

∑

(α0,...,αb)
α0,...,αb≥0

α0+···+αb=n

A(α0,...,αb)(C)

b∏

j=0

(V
(t,ℓ)
j (z))αj .

Moreover, WC1
(z) = WC2

(z) if and only if WC⊥

1
(z) = WC⊥

2
(z).

Proof. Given a linear code C ⊂ Rn, we apply the Poisson Summation Formula
with G = Rn, H = C, and V = C[z], the polynomial ring over C in one
indeterminate. The first task is to identify the character-theoretic annihilator

(Ĝ : H) = (R̂n : C) with C⊥. Let ρ be a generating character of Rℓ. We use

ρ to define a homomorphism β : R −→ R̂. For r ∈ R, the character β(r) ∈ R̂
has the form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β is an
isomorphism of R-modules. In particular, wt(r) =wt(βr), where wt(r) = 0 for
r = 0, and wt(r) 6= 0 for r 6= 0.

Extend β to an isomorphism β : Rn −→ R̂n of R-modules, via β(x)(y) =

ρ(yx), for x, y ∈ Rn. Again, wRT(x) = wRT(βx). For x ∈ Rn, β(x) ∈ (R̂ : C)
means β(x)(C) = β(C ·x) = 1. This means that the ideal C ·x of R is contained
in ker(ρ). Because ρ is a generating character, which implies that C · x = 0.

Thus x ∈ C⊥. The converse is obvious. Thus C⊥ corresponds to (R̂ : C) under
the isomorphism β.

Remember that β : Rn −→ R̂n is an isomorphism of R-modules and (C⊥)⊥

= C. Thus the Poisson Summation Formula becomes

∑

v∈C⊥

f(v) =
1

|C|

∑

c∈C

f̂(c),
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where the Fourier transform is

f̂(c) =
∑

v∈RN

χc(v)f(v).

Define f(v) =
∏n

i=1 z
⌈wRT (vi)/t⌉, where vi denotes the i-th byte of v. Then we

can get

f̂(c) =
∑

v∈RN

χc(v)

n∏

i=1

z⌈wRT (vi)/t⌉ =
∑

v∈Rnb

n∏

i=1

χci(vi)

n∏

i=1

z⌈wRT (vi)/t⌉(1)

=

n∏

i=1



∑

vi∈Rb

χci(vi)z
⌈wRT (vi)/t⌉


 =

n∏

i=1

V
(t,ℓ)
wRT (ci)

(z).(2)

Assume that RT weight of the fixed vector ci is wRT (ci) = j, and c has the
RT weight distribution vector (α0, . . . , αb), then we have

(3) f̂(c) =
b∏

j=0

(V
(t,ℓ)
j (z))αj .

Thus we have

∑

c∈C⊥

b∏

j=0

(z⌈j/t⌉)αj =
1

|C|

∑

c∈C

b∏

j=0

(V
(t,ℓ)
j (z))αj .

After rearranging the summations on both sides according to the RT weight
distribution vectors of codewords in C⊥ and C respectively, we have the result

∑

(α0,...,αb)
α0,...,αb≥0

α0+···+αb=n

A(α0,...,αb)(C
⊥)

b∏

j=0

(z⌈j/t⌉)αj(4)

=
1

|C|

∑

(α0,...,αb)
α0,...,αb≥0

α0+···+αb=n

A(α0,...,αb)(C)

b∏

j=0

(V
(t,ℓ)
j (z))αj .

According to Equations (1)-(3) and Definition 3.5, it is easily checked that

WC(z) is uniquely determined by V
(t,ℓ)
j (z), on the other hand, Equation (4)

implies that W⊥
C (z) is also uniquely determined by V

(t,ℓ)
j (z) and Equation (4)

is none other than the MacWilliams identity of the code C and its dual code
C⊥. Thus WC1

(z) = WC2
(z) if and only if WC⊥

1
(z) = WC⊥

2
(z). This proves

the main results. �

Note that if t = 1 and n = 1, then according to Definition 2.4, the m-
spotty RT metric coincides with RT metric, then the MacWilliams identity
with respect to the m-spotty RT weight enumerators in Theorem 3.6 becomes
explicitly the MacWilliams identity with respect to the RT enumerators. If
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Table 1. RT weight distribution vectors of the codewords in
C and the number of codewords.

RT weight vector number
(3, 0, 0, 0) 1
(0, 1, 1, 1) 4
(1, 0, 1, 1) 2
(0, 2, 1, 0) 2

Table 2. Polynomials V
(2,3)
j (z) for t = 2 and b = 3.

V
(2,3)
0 (z) = 1 + 8z + 18z2

V
(2,3)
1 (z) = 1 + 8z − 9z2

V
(2,3)
2 (z) = V

(2,3)
3 (z) = 1− z

t = 1 and n 6= 1, then it does not always become explicitly the MacWilliams
identity with respect to the RT enumerators.

4. Application examples

In Section 3, we present a proof of a MacWilliams identity that is valid over
any finite commutative Frobenius ring. In this section, we take three examples
to illustrate Theorem 3.6, where Tables 2, 4 and Table 6 also demonstrate the

results of Theorem 3.3 with respect to the proposition of polynomial V
(t,ℓ)
j (z).

Example 4.1. Let

G =

(
1 0 2 2 2 0 1 0 0
0 1 1 0 1 0 0 0 0

)

be the generator matrix of a linear code C of length 9 over F3 (which is a finite
field). C has 9 codewords. The dual code of C is a ternary linear code of length
9 and it has 2187 codewords.

Before computing the m-spotty weight enumerator of C, we illustrate how
to apply the formulae. It is easy to show that the codeword c = (011 010 000)
belongs to C. Let b = 3 and t = 2. Then, the RT weight distribution vector
of the codeword is (α0, α1, α2, α3) = (1, 0, 1, 1). The RT weight distribution
vectors of the codewords of C, the number of codewords, and polynomials

V
(t,ℓ)
j (z) for b = 3 and t = 2 are shown in Tables 1 and 2 for the necessary

computations to apply Theorem 3.6.
According to the expression of WC(z) and Table 1, we obtain the m-spotty

weight enumerator of C as WC(z) = 1 + 4z3 + 4z4. By applying Theorem 3.6
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Table 3. RT weight distribution vectors of the codewords in
C and the number of codewords.

RT weight vector number
(2, 0, 0, 0) 1
(0, 0, 0, 2) 18
(0, 1, 0, 1) 1
(0, 0, 1, 1) 3
(0, 1, 1, 0) 1

Table 4. Polynomials V
(2,6)
j (z) for t = 2 and b = 3.

V
(2,6)
0 (z) = 1 + 35z + 180z2

V
(2,6)
1 (z) = 1 + 35z − 36z2

V
(2,6)
2 (z) = V

(2,6)
3 (z) = 1− z

and Table 2, we obtain

WC⊥(z) =
1

|C|

∑

α0+α1+α2+α3=3

A(α0,α1,α2,α3)(C)
b∏

j=0

(V
(2,3)
j (z))αj

=
1

9
(V

(2,3))
0 (z))3 +

4

9
(V

(2,3))
1 (z))(V

(2,3))
2 (z))(V

(2,3))
3 (z))

+
2

9
(V

(2,3))
0 (z))(V

(2,3))
2 (z))(V

(2,3))
3 (z)) +

2

9
(V

(2,3))
1 (z))2(V

(2,3))
3 (z))

= 1 + 10z + 24z2 + 116z3 + 542z4 + 846z5 + 648z6.

Example 4.2. Let

G =




1 1 1 5 4 2
0 3 0 3 3 3
0 0 3 3 0 3




be the generator matrix of a linear code C over Z6 (which is a residue class
ring) of length 6. C has 24 codewords. The dual code of C is also a linear code
of length 6 and it has 1944 codewords.

The number of codewords, and polynomials V
(t,ℓ)
j (z) for b = 3 and t = 2 are

shown in Tables 3 and 4 for the necessary computations to apply Theorem 3.6.
According to the expression of WC(z) and Table 3, we obtain the m-spotty

weight enumerator of C as

WC(z) = 1 + z2 + 4z3 + 18z4.
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Table 5. RT weight distribution vectors of the codewords in
C and the number of codewords.

RT weight vector number
(3, 0, 0, 0) 1
(0, 1, 1, 1) 12
(1, 1, 0, 1) 3
(0, 0, 0, 3) 11
(0, 0, 1, 2) 5

Table 6. Polynomials V
(2,16)
j (z) for t = 2 and b = 3.

V
(2,6)
0 (z) = 1 + 255z + 3840z2

V
(2,6)
1 (z) = 1 + 255z − 256z2

V
(2,6)
2 (z) = V

(2,6)
3 (z) = 1− z

According to Theorem 3.6 and Table 4, we obtain

WC⊥(z) =
1

|C|

∑

α0+α1+α2+α3=3

A(α0,α1,α2,α3)(C)

b∏

j=0

(V
(2,6)
j (z))αj

=
1

24

[
(V

(2,6)
0 (z))2 + 18(V

(2,6))
3 (z))2 + (V

(2,6)
1 (z))(V

(2,6)
2 (z))

+ (V
(2,6)
1 (z))2(V

(2,6)
3 (z)) + 3(V

(2,6)
2 (z))2(V

(2,6)
3 (z))

]

=
1

24

[
(1 + 35z + 180z2)2 + 18(1− z)2 + 2(1 + 35z − 36z2)(1 − z)

+ 3(1− z)2
]

= 1 + 4z + 61z2 + 528z3 + 1350z4.

Example 4.3. Let C be a byte error-control code over R16 = F2+uF2+vF2+
uvF2 (which is not a chain ring) generated by the follow set

{(1, 0, 0, u, v, 1, 0, 0, u), (0, 0, uv, uv, 0, 0, 0, uv, uv)},

where u2 = v2 = 0 and uv = vu. Its length is 9 and byte length is 3. It is
easy to check that the generators are independent, hence the code has type
(16)1(2)1 and |C| = 32. Its dual code C⊥, which is also a byte error-control
code over R16 of length 9, contains 2147483648 (|C⊥| is very large) codewords.

The number of codewords, and polynomials V
(t,ℓ)
j (z) for b = 3 and t = 2 are

shown in Tables 5 and 6 for the necessary computations to apply Theorem 3.6.
According to the definition of WC(z) and Table 5, we obtain the m-spotty

weight enumerator of C as

WC(z) = 1 + 3z3 + 12z4 + 5z5 + 11z6.



AN IDENTITY BETWEEN THE m-SPOTTY ROSENBLOOM-TSFASMAN 821

Combining Theorem 3.6 with Table 4, we obtain

WC⊥(z) =
1

|C|

∑

α0+α1+α2+α3=3

A(α0,α1,α2,α3)(C)

b∏

j=0

(V
(2,16)
j (z))αj

=
1

32

[
(V

(2,16)
0 (z))3 + 12(V

(2,16))
1 (z))(V

(2,16))
2 (z))(V

(2,16))
3 (z))

+ 3(V
(2,16))
0 (z))(V

(2,16))
1 (z))(V

(2,16))
3 (z)) + 11(V

(2,16)
3 (z))3

+ 5(V
(2,16)
2 (z))(V

(2,16)
3 (z))2

]

= 1 + 165z + 12555z2 + 781303z3 + 24613464z4 + 352604160z5

+ 1769472000z6.

5. Conclusion

In this paper, we derive a MacWilliams identity for m-spotty RT weight
enumerators over arbitrary finite commutative Frobenius rings from the Poisson
summation formula, which includes [9] as a special case and extends the results
of [18]. This provides the relation between the m-spotty RT weight enumerator
of the code and that of the dual code, which can be used to determine the error-
detecting and error-correcting capabilities of a code. Especially when the size
of C⊥ of a code C is very large (Example 4.3), it is easy to determine the RT
weight distribution of m-spotty byte error-control codes by Theorem 3.6.

During the revision of the paper anonymous reviewers pointed out references
[4] and [10] that also had studied a generalization version of RT metric.
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[7] M. Özen and I. Siap, Codes over Galois rings with respect to the Rosenbloom-Tsfasman
metric, J. Franklin Inst. 344 (2007), no. 5, 790–799.
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